期刊文献+

DMFC阳极催化剂Fe_3O_4@Pt的制备及其催化性能 被引量:1

DMFC Anode Catalyst Fe_3O_4@Pt Particles: Synthesis and Catalytic Performance
下载PDF
导出
摘要 采用水热法制得粒径为150~300 nm、分散性良好的Fe_3O_4磁性内核颗粒,经APTES对Fe_3O_4进行氨基化修饰后,用NaBH_4原位还原H_2PtCl_6制得Fe_3O_4@Pt核壳结构的DMFC阳极催化剂,对其进行TEM、XRD、XPS、EDS和催化活性及稳定性表征,结果表明:制得的Fe_3O_4@Pt颗粒表面主要由Pt组成,形成了完整包覆一层Pt的Fe_3O_4@Pt粒子,颗粒粒径为200~300 nm,Fe与Pt的原子比近似为3:1;Fe_3O_4@Pt具有良好的稳定性,在循环100圈后,Fe_3O_4@Pt修饰的玻碳电极在新配制的0.5 mol/L H_2SO_4+1 mol/L CH_3OH溶液中循环第101圈的峰电流密度是第一圈的94.51%;纯Pt的峰电流密度仅为Fe_3O_4@Pt的90.73%,Fe_3O_4和Pt之间存在电荷传递,从而提高了Fe_3O_4@Pt的催化活性。因此Fe_3O_4@Pt有望取代Pt作为DMFC的阳极催化剂。 Fe3O4 magnetic core particles was prepared by hydrothermal method with a particle size of 150–300 nm, which showed good dispersibility. After amination of Fe3O4 particles by APTES, combined with in situ reduction of H2PtCl6 with NaBH4, we obtained Fe3O4@Pt with core-shell structure, and used it as a DMFC anode catalyst. The composition, morphology and structure of Fe3O4@Pt were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). The electrocatalytic activities of Fe3O4@ Pt were also investigated by cyclic voltammetry (CV). As a result, the surface of Fe3O4@ Pt particles mainly composed of Pt. The particle size of Fe3O4@Pt particles is between 200 nm and 300 nm. Atomic ratio between Fe and Pt is about 3:1. The prepared Fe3O4@Pt particles have a good stability. After 100 cycles, the cycle peak current density of the 101th’ cyclic voltammetry curve of glassy carbon electrode modified by Fe3O4@Pt in fresh 0.5 mol/L H2SO4+1 mol/L CH3OH aqueous solutions is 94.51% of the first cyclic voltammetry curve. The peak current density of pure Pt is only 90.73% compared with that of Fe3O4@Pt. The charge transfer between Fe3O4 and Pt improves the catalytic activity Fe3O4@Pt. As a result, this work demonstrates the potential of Fe3O4@Pt catalyst to replace Pt as the anode of DMFC in the future.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2017年第9期916-922,共7页 Journal of Inorganic Materials
基金 北京市自然科学基金(2142025)~~
关键词 四氧化三铁 核壳结构 甲醇催化氧化 Fe3O4 Pt core-shell the catalytic oxidation of methanol
  • 相关文献

参考文献3

二级参考文献156

  • 1ABDEL AAL A,HASSAN H B. Electrodeposited nanocomposite coatings for fuel cell application[J].Journal of Alloys and Compounds,2009,(1/2):652-656.
  • 2ABDEL RAHIM M A,HASSAN H B. Titanium and platinum modified titanium electrodes as catalysts for methanol electrooxidation[J].Thin Solid Films,2009,(11):3362-3369.doi:10.1016/j.tsf.2008.12.006.
  • 3LAMY C,LIMA A,LERHUN V,DELIME F COUTANCEAU C LEGER J M. Recent advances in the development of direct alcohol fuel cells (DAFC)[J].Journal of Power Sources,2002,(02):283-296.
  • 4HAMNETT A. Mechanism and electrocatalysis in the direct methanol fuel cell[J].Catalysis Today,1997,(04):445-457.
  • 5WEBER M F,DIGNAM M J,PARK S M,VENTER R D. Kinetics of oxygen reduction on sputtered platinum[J].Journal of the Electrochemical Society,1986,(04):734-738.
  • 6CHOI W C,KIM J D,WOO S I. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry[J].Catalysis Today,2002,(3/4):235-240.
  • 7WANG M,GUO D-J,LI H-L. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J].Journal of Solid State Electrochemistry,2005,(06):1996-2000.
  • 8GUO D J,LI H L. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution[J].Carbon,2005,(06):1259-1264.
  • 9MAIYALAGAN T,VISWANATHAN B,VARADARAJU U. Nitrogen containing carbon nanotubes as supports for Pt-Alternate anodes for fuel cell applications[J].Electrochemistry Communications,2005,(09):905-912.
  • 10WANG C-H,SHIH H-C,TSAI Y-T,DU H-Y CHEN L-C CHEN K-H. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth[J].Electrochimica Acta,2006,(04):1612-1617.

共引文献19

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部