期刊文献+

原子力显微镜(AFM)在细菌生物被膜研究中的应用 被引量:3

Application of atomic force microscopy(AFM) to study bacterial biofilms
原文传递
导出
摘要 原子力显微镜(AFM)作为一项重要的表面可视化技术,以其独特的优势(纳米级的空间分辨率、皮牛级力灵敏度、免标记、可在溶液环境下工作)被广泛应用于生物被膜的研究。AFM不仅可以在近生理环境下对生物被膜表面超微形貌进行可视化表征,同时还可以通过纳米压痕对生物被膜的机械特性(弹性和粘性)进行定量测量,利用AFM单细胞和单分子力谱技术可以获得生物被膜形成过程中细胞-基底以及细胞-细胞之间的相互作用力,为生物被膜的实时原位系统研究提供了可行性。本文简述了AFM的基本操作原理,综述了近年来AFM用于生物被膜表面超微结构成像、机械特性测量以及相互作用力研究方面的进展,并对AFM在生物被膜研究中面临的问题和未来的发展方向进行了讨论。 Because of the nanometre resolution, piconewton force sensitivity, label-free technique and the ability to operate in liquid environments, atomic force microscopy (AFM) has emerged as a powerful tool to explore the biofilm development processes. AFM provides three-dimensional topography and structural details of biofilm surfaces under in-situ conditions. It also helps to generate key information on the mechanical properties of biofilm surfaces, such as elasticity and stickiness. Additionally, single-molecule and single-cell force spectroscopies can be applied to measure the strength of adhesion, attraction, and repulsion forces between cell-solid and cell-cell surfaces. This paper outlined the basic principleof AFM technique and introduced recent advances in the application of AFM for the investigation of ultra-morphological, mechanical and interactive properties of biofilms. Furthermore, the existing problems and future prospects were discussed.
出处 《生物工程学报》 CAS CSCD 北大核心 2017年第9期1399-1410,共12页 Chinese Journal of Biotechnology
基金 国家重点研发计划(No.2016YFD0800206) 国家自然科学基金(No.41522106)资助~~
关键词 原子力显微镜 细菌生物被膜 超微形貌 机械特性 相互作用力 atomic force microscopy (AFM), bacterial biofilms, ultra-morphology, mechanical properties, interaction forces
  • 相关文献

参考文献3

二级参考文献150

  • 1Camesano TA, Liu YT, Datta M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv Wat Res, 2007, 30: 1470-1491.
  • 2Brant JA, Childress AE. Assessing short-range membrane – colloid interactions using surface energetics. J Membr Sci, 2002, 203: 257-273.
  • 3Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces, 1999, 14: 105-119.
  • 4Johnson WP, Blue KA, Logan BE, Arnold RG. Modeling bacterial detachment during transport through porous media as a residence-time-dependent process. Wat Resour Res, 1995, 31 (11): 2649-2658.
  • 5Jiang X, Morgan J, Doyle MP. Fate of Escherichia coli O157:H7 in manure-amended soil. Appl Environ Microbiol, 2002, 68: 2605-2609.
  • 6Munakata-Marr J, McCarty PL, Shields MS, Reagin M, Francesconi SC. Enhancement of trichloroethylene degradation in aquifer microcosms bioaugmented with wild type and genetically altered Burkholderia (Pseudomonas) cepacia G4 and PR1. Environ Sci Technol, 1996, 30: 2045-2052.
  • 7Brantley SL, Liermann L, Bau M, Wu S. Uptake of trace metals and rare earth elements from hornblende by a soil bacterium. Geomicrobiol J, 2001, 18: 37-61.
  • 8Fein JB, Daughney CJ, Yee N, Davis T. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta, 1997, 61: 3319-3328.
  • 9Grantham MC, Dove PM. Investigation of bacterial-mineral interactions using fluid tapping mode atomic force microscopy. Geochim Cosmochim Acta, 1996, 60: 2473-2480.
  • 10Hersman L, Lloyd T, Sposito G.. Siderophore-promoted dissolution of hematite. Geochim Cosmochim Acta, 1996, 59: 3327-3330.

共引文献8

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部