期刊文献+

基于相关向量机模型的用电需求预测研究——以北京为例 被引量:2

Forecasting Electricity Consumption Demand Based on Relevance Vector Machine:The Case Study of Beijing
下载PDF
导出
摘要 用电需求的科学预测在能源系统的运行、管理与决策中起着重要的作用.针对用电需求的非线性特征及传统预测技术的缺陷,引入相关向量机构建预测模型对北京用电量进行预测.实证结果表明,与基准模型相比,所引入方法能有效提高模型预测精度,预测结果可为相关部门的决策制定提供必要的参考. Scientific electricity consumption demand forecast plays an important role in the operation, management and decision-making of energy system In view of the nonlinearity in the electricity consumtion demand and some deficiencies of traditional forecast techniques, this study introduce relevance vector rrrachine(RVIVO and develop forecast n-odel to predict consumption demand in Beijing.With the empirical analysis results suggesting that RVM can effectively improve the prediction accmacy compared to its counterparts including SVR and ANN models. Forecasted results can be referenced by the decision-making of relevant departments.
作者 张斌儒 唐玉萍 胡蓉 ZHANG Binru TANGYuping HU Rong(Mathematics School of Sichuan University of Arts rind Sciences, Dazhou Sichuan 635000, Chin)
出处 《四川文理学院学报》 2017年第5期10-14,共5页 Sichuan University of Arts and Science Journal
基金 四川省教育厅一般项目(17ZB0375) 国家自然科学基金项目(71373023)
关键词 相关向量机 用电需求 支持向量回归 预测精度 relevance vector machine electricity corlsumption demand support vector regression prediction accuracy
  • 相关文献

参考文献2

二级参考文献23

  • 1王锡淮,朱思锋.基于支持向量机的船舶电力负荷预测[J].中国电机工程学报,2004,24(10):36-39. 被引量:40
  • 2[3]Khotanzad A.Afkhami-R0hani R,Maratukukulam D.ANNSTLF-Artificial Neural Network Short-time Load Forecaster-Generation Three[J].IEEE Trans.On Power Systems,1998.13(4):1413-1422.
  • 3[4]Yoo H,Pimmel R VL,Short Term Load Forecasting Using a Self-supervised Adaptive Neural Network[J].IEEE Trans.On Power Systems,1999.14(2):779-784.
  • 4[7]Vapnik V N.The nature of statistical learning theory[M].New York;Springer,1995.
  • 5[8]邓乃样,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社,2004.
  • 6[9]Schlkopf B,Smola A J,Wilimson R,et al.New support vector algorithms[J].Neural Computation,2000,12(5):1207-1245.
  • 7[12]Chailimourda A,Schlkopf B,Smola A J.Experimentally optimal v in support vector regression for different noise models and parameter settings[J].Neural Networks,2004,17(1):127-141.
  • 8[13]Chang C C,Lin C J.LIBSVM:a library for support vector machines[R].Technical Report,Department of computer Science and Information Engineering,National Taiwan University,2001.
  • 9[15]Browne M W,Cross-validation methoes[J].Journal of Mathematical Psychology,2000,44(1):108 -132.
  • 10韩家炜 范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001,8..

共引文献21

同被引文献27

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部