期刊文献+

L?bell多面体上的小覆盖 被引量:1

Small Covers Over L?bell Polytopes
下载PDF
导出
摘要 计算了L?bell多面体上的小覆盖的等变微分同胚类的个数.在1991年,Davis和Januszkiewicz提出了小覆盖的概念,给出了组合和拓扑间的一种直接联系,并证明了单凸多面体上的特征映射(Z^n_2染色)与该多面体上的小覆盖一一对应.文中作者给出了L?bell多面体上的自同构群和染色规律,结合Burnside引理计算了一般的L?bell多面体上的小覆盖的等变微分同胚类的个数. In this paper, the number of equivariant diffeomorphism classes of small covers over LSbell polytopes is calculated. The notion of small cover was introduced by Davis and Januszkiewicz in 1991, which gives a direct connection between topology and combinatorics, and it is proved that all small covers over a simple convex polytope p^n correspond to all characteristic functions (Z2^n-colorings) defined on all facets of P^n. The author finds the automorphism of LSbell polytopes and the coloring number defined on them, and calculates the number of equivariant diffeomorphism classes of small covers over LSbell polytopes, with Burnside lemma applied.
作者 付鑫
出处 《数学年刊(A辑)》 CSCD 北大核心 2017年第2期227-242,共16页 Chinese Annals of Mathematics
关键词 Lobell多面体 小覆盖 染色 等变微分同胚 Lobell polytope, Small cover, Coloring, Equivariant diffeomorphism
  • 相关文献

参考文献1

二级参考文献10

  • 1Davis M W, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions [J]. Duke Math Y, 1991, 61:417-454.
  • 2Cai M Z, Chen X, Lii Z. Small covers over prisms [J]. Topology Appl, 2007, 154:2228-2234.
  • 3Choi S. The number of small covers over cubes [J]. Algebr Geom Topol, 2008, 8:2391-2399.
  • 4Kamishima Y, Masuda M. Cohomological rigidity of real Bott manitblds [J]. Algebr Geom Topol, 2009, 9:2479-2502.
  • 5Lu Z, Yu L. Topology types of 3-dimensional sinall covers [EB/OL]. arxiv:0710.4496.
  • 6Lu Z, Masuda M. Equivariant classification of 2-torus manifolds [J]. Colloq Math, 2009, 115:171-188.
  • 7Buchstaber V M, Panov T E. Torus actions and their applications in topology and combinatorics [M] //University Lecture Series. Vol 24, Providenee, RI: Amer Math Soc, 2002.
  • 8Bredon G E. Introduction to compact transformation groups [M]//Pure and Applied Mathematics. Vol 46, New York: Academic Press, 1972.
  • 9MacPherson R. Equivariant invariants and linear geometry [M]//Geometric combinatorics, IAS/Park City Math. Vol 13, Providence, RI: Amer Math Soc, 2007:317-388.
  • 10谭强波.局部标准2-torus作用和带角流形[J].数学年刊(A辑),2009,30(3):333-338. 被引量:1

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部