期刊文献+

基于SVM算法的环锭纺纱机钢丝圈故障诊断 被引量:2

Fault Diagnosis of Ring Spinning Frame Based on SVM Algorithm
下载PDF
导出
摘要 使用普瑞美RING EXPERT装置采集环锭纺纱机钢丝圈振动信息,结合联合时域频域方法提取钢丝圈振动信息特征向量,在运用交叉验证法和网格搜索法进行参数优化的基础上,利用支持向量机智能算法对钢丝圈出现的不平衡、碰磨、裂纹等故障进行诊断分析.仿真结果表明,诊断耗时短,正确率达到88.0%,基本解决了中小型纺织企业环锭纺纱机钢丝圈故障诊断问题. This paper firstly adopts the Bremen RING EXPERT device to collect the vibration information, and combines with the time-frequency domain method to extract the characteristic vector of the vibration information of steel wire ring. Then, it use the support vector machine(SVM) intelligent algorithm for the fault diagnosis and analysis based on the parameters optimization by the cross validation method and the grid search method, when the steel wire ring appears the unbalance, rubbing and cracking state. The simulation results show that the diagnosis time is short and the correct rate is 88. 0%, basic solves the small and medium-sized textile enterprises ring spinning frame steel wire circle fault diagnosis problem.
出处 《杭州电子科技大学学报(自然科学版)》 2017年第4期47-52,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省公益技术研究资助项目(2015C31084)
关键词 环锭纺纱机钢丝圈 信息采集 特征提取 支持向量机算法 故障诊断 ring spindle spinning machine information acquisition feature extraction support vector machine algorithm fault diagnosis
  • 相关文献

参考文献5

二级参考文献33

  • 1VNVapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2G P Liu.Nonlinear Identification and Control:a Neural Network Approach[M].London,New York:Springer,2001.
  • 3V N Vapnik,S Golowich,A Smola.Support vector method for function approximation,regression estimation,and signal processing[C]//In M Mozer,M Jordan,and T Petsche,(eds.).Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1997:281-287.
  • 4J C Christopher,A Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery (S1384-5810),1998,2(2):121-167.
  • 5A Smola,B Scho1kopf.A Tutorial on Support Vector Regression[EB/OL].(1998)[2004].http://www.neurololt.com.
  • 6J C Platt.Fast Training of Support Vector Machines using Sequential Minimal Optimization[C]//In Advances in Kernel Methods-Support Vector Learning MIT Press,1999,185-208.
  • 7A Gretton,A Doucet,R Herbrich.Support vector regression for black-box system identification[C]// In:Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing,2001,Piscataway:IEEE press,2001:341-344
  • 8Y Tan,J Wang.A Support Vector Machine with a Hybrid Kernel and Minimal Vapnik-Chervonenk is Dimension[J].IEEE transactions on knowledge and data engineering (S 1041-4347),2004,16(4):385-395.
  • 9C W Hsu,C C Chang,C J Lin.A Practical Guide to Support Vector Classification[EB/OL].(2003)[2004].http://www.csie.ntu.edu.tw/~cjlin.
  • 10H T Lin,C J Lin.A study on sigmoid kernels for SVM and the training of non-PSD Kernels by SMO-type methods[EB/OL].(2003)[2004].http://www.csie.ntu.edu.tw/~cjlin.

共引文献103

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部