期刊文献+

Role of Sn in Ni-Sn/CeO2 Catalysts for Ethanol Steam Reforming 被引量:1

Role of Sn in Ni-Sn/CeO2 Catalysts for Ethanol Steam Reforming
原文传递
导出
摘要 Reducible oxides (e.g.,CeO2 and ZrO2) supported 3d transition metals (e.g.,Ni,Co,Pt) exhibit remarkable catalytic activity in reactions that involve water activation,such as steam reforming and water gas shift.This paper describes the influence of Sn addition on the performance of Ni/CeO2 catalysts in ethanol steam reforming.0.25 wt% Sn addition improved the stability of Ni/CeO2 by forming Ni-Sn bimetallic nanoparticles with Sn enriched surfaces to suppress the carbon deposition.Ni0.25Sn/CeO2 kept over 90% ethanol conversion in a 20 h stability test at 600 ℃ with over 60% hydrogen selectivity under a gas hourly space velocity of 57000 mL/(g·h).However,the presence of Sn decreased the overall oxygen storage capacity and oxygen mobility of NiSn/CeO2,which hampered water activation process and coke elimination occurring at the interface between Ni and CeO2.Additionally,ethanol decomposition was also suppressed due to the coverage of Sn atoms on Ni surfaces. Reducible oxides (e.g.,CeO2 and ZrO2) supported 3d transition metals (e.g.,Ni,Co,Pt) exhibit remarkable catalytic activity in reactions that involve water activation,such as steam reforming and water gas shift.This paper describes the influence of Sn addition on the performance of Ni/CeO2 catalysts in ethanol steam reforming.0.25 wt% Sn addition improved the stability of Ni/CeO2 by forming Ni-Sn bimetallic nanoparticles with Sn enriched surfaces to suppress the carbon deposition.Ni0.25Sn/CeO2 kept over 90% ethanol conversion in a 20 h stability test at 600 ℃ with over 60% hydrogen selectivity under a gas hourly space velocity of 57000 mL/(g·h).However,the presence of Sn decreased the overall oxygen storage capacity and oxygen mobility of NiSn/CeO2,which hampered water activation process and coke elimination occurring at the interface between Ni and CeO2.Additionally,ethanol decomposition was also suppressed due to the coverage of Sn atoms on Ni surfaces.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第5期651-658,共8页 中国化学(英文版)
关键词 supported catalysts ethanol steam reforming Ni catalysts metal-support interaction hydrogen energy supported catalysts, ethanol steam reforming, Ni catalysts, metal-support interaction, hydrogen energy
分类号 O [理学]
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部