期刊文献+

采用局部线性嵌入的稀疏目标跟踪方法 被引量:4

Sparse object tracking method using local linear embedding
下载PDF
导出
摘要 目标跟踪是从复杂的背景中辨认出运动目标,并且对目标进行准确且连续的追踪。如何在遮挡、形变、背景复杂的条件下鲁棒性跟踪目标仍是亟待解决的问题。针对遮挡和形变问题,提出一种局部线性嵌入(LLE)和稀疏表示的算法来有效的学习外观模板。其中LLE是流形学习的一种典型算法。在该算法中每个点的近邻权值在平移、旋转、伸缩变化下是保持不变的,因此可以用来提取目标的本质特征,发现数据的内在规律。算法首先采用局部线性嵌入提取低维特征,提取后的特征作为基向量与琐碎模板组成稀疏原型,稀疏原型用于模板的更新。算法保持了原有稀疏跟踪方法对遮挡处理的优势,同时对目标形变有较好的稳健性。实验结果表明,跟踪算法比其他7个常用的算法在9个视频序列中有较好的鲁棒性能。 Definition of object tracking is identifying the moving targets from complex background,and it should track the target accurately and continuously.In occlusion,deformation,complex background conditions robust tracking target is still a challenging problem to be solved.A novel online object tracking algorithm is proposed for the occlusion and deformation with sparse prototypes,which exploits local linear embedding( LLE) algorithm with sparse representation scheme for learning effective appearance model.LLE is a classic manifold learning algorithm.In the algorithm,the neighbor points weight of each point remains unchanged in translation,rotation,scale changes.Thus,it can be used to extract the essential characteristics of target and find the inherent law of data.Firstly,the algorithm uses the local linear embedding algorithm to extract low dimensional characteristic.Then the sparse prototype is composed of the base vector which is extracted from the low dimensional characteristic and trivial templates.It can be used to update templates.This algorithm maintains the advantages of the original sparse tracking method to occlusion,and has a good robust tracking effect of deformation object.The experimental results show that the proposed tracking algorithm is better than the other seven commonly used algorithms in the nine video sequences.
作者 孙锐 王旭 张东东 高隽 Sun Rui Wang Xu Zhang Dongdong Gao Jun(School of Computer and Information, Hefei University of Technology, Hefei 230009, Chin)
出处 《电子测量与仪器学报》 CSCD 北大核心 2017年第8期1312-1320,共9页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61471154)资助项目
关键词 外观模型 目标跟踪 局部线性嵌入 稀疏表示 流形学习 appearance model object tracking local linear embedding(LLE) sparse representation manifold learning
  • 相关文献

参考文献5

二级参考文献64

  • 1ZHANG ChunHua 1 , TIAN YingJie 2 & DENG NaiYang 3,1 School of Information, Renmin University of China, Beijing 100872, China,2 Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100080, China,3 College of Science, China Agricultural University, Beijing 100083, China.The new interpretation of support vector machines on statistical learning theory[J].Science China Mathematics,2010,53(1):151-164. 被引量:13
  • 2常发亮,马丽,乔谊正.遮挡情况下基于特征相关匹配的目标跟踪算法[J].中国图象图形学报,2006,11(6):877-882. 被引量:16
  • 3王意锋,季中恒,葛宝忠.联合卡尔曼法消除无线定位中的非视距误差[J].电子技术应用,2007,33(2):107-109. 被引量:2
  • 4ANTONINI G,MARTINEZ S V,BIERLAIRE M,et al.Behavioral priors for detection and tracking of pedestriansin video sequences[J].International Journal on Comput-er Vision,2006,69(2):159-180.
  • 5TUZEL O, PORIKLI F, MEER P. Region covariance: a fast descriptor for detection and classifition [ C ]. Pro- ceeding of Europe-an Conference on Computer Vision (ECCV) ,2006:589-600.
  • 6TOSATO D, FARENZENA M, SPERA M, et al. Multi- class classification on riemannian manifolds for video surveillance [ C ]. Proceeding of European Conference on Computer Vision(ECCV) ,2010:378-391.
  • 7FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D, et al. Object detection with discriminatively trained part based models [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence ( PAMI), 2010, 32 (9) :1627-1645.
  • 8BENFOLD B, REID I. Stable multi-target tracking in re- al-time surveillance video[ C ]. Proceeding of IEEE In- ternational Conference on Computer Vision and Pattern Recognition(CVPR) ,2011:3457-3464.
  • 9PANDEY M, LAZEBNIK S. Scene recognition and weak- ly supervised object localization with deformable part- based models [ C ]. Proceeding of IEEE International Conference on Computer Vision ( ICCV ), 2011 : 1307-1314.
  • 10PARKHI O M,VEDALDI A, JAWAHAR C V, et al. The truth about cats and dogs [ C ]. Proceeding of IEEE In- ternational Confer-ence on Computer Vision (ICCV , 2011 : 1427-1434.

共引文献116

同被引文献29

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部