期刊文献+

基于频率筛分的无监督人体姿态特征提取与识别研究 被引量:2

Unsupervised Frequency Sifting for Human Gesture Detection and Recognition
下载PDF
导出
摘要 基于视频序列的人体行为分析需要检测和判别人体姿态,已有人体姿态检测与判别方法往往达不到实用性要求。从两个方面探讨应用BEMD(bidimensional empirical mode decomposition)算法提升特征分离度与判别性,以进行人体姿态检测和判别:BEMD分解源图像得到的多层固有模态图BIMF具有判别特征,可形成具有强边缘的对比度高的区域,其中包括人体轮廓区域;从低分辨率尺度BIMF图像到高分辨率尺度BIMF图像递归计算,建立基于BEMD的多尺度树(BEMD multiscale-trees tructured)模型,快速提取目标区域并获取人体形状轮廓特征。实验证明,利用该方法进行人体姿态轮廓特征提取,并建立人体姿态的简化模型,可快速检测并判别人体姿态,以达到实时识别。 Human behavior analysis based on video sequences needs to detect and determine human posture. The BEMD (bidimensional empirical mode decomposition) algorithm is used to enhance the feature separation and discriminance. The multi-layer intrinsic modal graph BIMF obtained by decomposing the original image through BEMD has discriminant features, which can form a region of high contrast with a strong edge, including a contour region of the human body. Through recursive computation from low resolution scale BIMF image to high resolution scale BIMF image, BEMD multiscale-trees tructured model is established, the target region is extracted quickly and the contour features of human body shape are obtained. Experiments show that this meth- od can be used to extract the contour feature of human posture and establish a simplified model of human pos- ture, which can quickly detect and determine human posture to achieve real-time recognition.
作者 谭冠政 叶华 陈敏杰 TAN Guan-zheng YE Hua CHEN Min-jie(School of Information Science and Engineering, Central South University, Changsha 410083, China Provincial Collaborative Innovation Center of Dongtinghu Lake Ecological Economic Zone Construction and Development, Hunan University of Arts and Science, Changde 415000, China)
出处 《测控技术》 CSCD 2017年第9期7-10,17,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61403136) 湖南省自然科学基金资助项目(14JJ5008) 湖南省教育厅科学研究项目(16C1087)
关键词 频率筛分 强边缘 多尺度分辨率递归 frequency sift strong edges multi-scale resolution recursion
  • 相关文献

参考文献1

二级参考文献8

  • 1Poggi G,Ragozini R P.Image segmentation by tree-structured Markov random fields[J].Signal Processing Letters,1999,6(7):155-157.
  • 2D'Elia C,Poggi G,Scarpa G.A tree-structured Markov random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,2003,12(10):1259-1273.
  • 3Poggi G,Scarpa G,Zerubia J B.Supervised segmentation of remote sensing images based on a tree-structured MRF model[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(8):1901-1911.
  • 4Poggi G,Scarpa G,Z.J.Segmentation of remote-sensing images by supervised TS-MRF:IEEE International Conference on Image Processing,2004[C].Singapore,2000(3):1867-1870.
  • 5Krishnamachari S,Chellappa R.Multiresolution Gauss-Markov random field models for texture segmentation[J].IEEE Transactions on Image Processing,1997,6(2):251-267.
  • 6Myunghee Jung,Eui-Jung Yun,Kim C S.Multiresolution Approach for Texture Segmentation Using MRF Models:Geoscience and Remote Sensing Symposium,2005[C].Se-Seoul,Korea,2005:3971-3974.
  • 7Daubechies,I.Ten lectures on wavelets.1992:SIAM.
  • 8刘国英,罗伦才,梅天灿,秦前清.基于MRMRF的多光谱纹理影像分割方法[J].武汉大学学报(信息科学版),2008,33(9):963-966. 被引量:8

共引文献6

同被引文献10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部