摘要
在分析RBF神经网络预测算法和主成分分析方法的基础上,本文针对地理空间数据的复杂相关性和较强非线性,深入研究了主成分分析与RBF神经网络结合原理,构建了PCA-RBF网络预测模型,最后将预测模型应用于水质信息预测中。实验结果表明:该模型对海量的高维异构数据可进行有效降维,从而优化RBF神经网络结构,有效地提高了地理空间数据预测时的精度,并为GIS领域地理空间数据的预测提供了一种新思路。
Based on the analysis of RBF neural network prediction algorithm and principal component analysis method, this paper aimed at complex correlation and strong nonlinearity of geographical spatial data, in - depth study of the combine principle of principal component analysis and RBF neural network, constructed the PCA - RBF network prediction model. Finally, the model is applied to predict water quality information, the experimental results show that, in the high dimensional heterogeneous data, the model can effec- tively reduce the dimensionality, so as to optimize the structure of RBF neural network, and effectively improves the prediction accura- cy of the geographic spatial data, and provides a new idea for predicting geospatial data in GIS.
作者
周艳柳
郭兰博
李景文
殷手强
郭彤枫
ZHOU Yan- liu GUO Lan - bo LI Jing - wen YIN Shou - qiang GUO Tong - feng(College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China Guangxi Key Laboratory of Spatial Information and Ceomatics, Guilin University of Technology, Gnilin 541006, China)
出处
《测绘与空间地理信息》
2017年第9期106-108,113,共4页
Geomatics & Spatial Information Technology
基金
国家自然科学基金项目(41461085)
广西自然科学基金重点项目(2014GXNSFDA118032)
广西空间信息与测绘重点实验室主任基金(151400704)资助