期刊文献+

一种求解多处理器作业调度的Hopfield神经网络方法 被引量:7

Scheduling Mutiprocessor Job Using Hopfield Neural Network
下载PDF
导出
摘要 多处理器作业调度是一类非常复杂的组合优化问题 ,而Hopfield神经网络通常被广泛用于求解各种组合优化问题。针对具有时间约束 (执行时间和最后执行期限 )和若干资源约束的多处理器作业调度问题 (已知是NP难解的 ) ,提出了一种基于离散的Hopfield神经网络的求解新方法。该方法直接把问题的各种约束表示为Hopfield神经网络的能量函数项 ,进而导出神经网络模型。实验仿真结果表明了该方法的有效性。 Multiprocessor job scheduling is a complicated combinatorial optimization problem, and the Hopfield neural network is extensively applied to solve various combinatorial optimization problems. An effective Hopfield neural network (HNN) approach to multiprocessor job scheduling problem (known to be a NP hard problem)is proposed, which is apt to resource and timing (execution time and deadline) constraints. This approach directly formulates the energy function of HNN according to constraints term by term and derives HNN model. Simulation results demonstrate that the derived energy function works effectively for this class of problems.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2002年第8期13-16,共4页 Systems Engineering and Electronics
基金 河北省自然科学基金资助课题 (60 2 62 4)
关键词 多处理器 作业调度 Hopfield神经网络方法 作业车间 调度工作 时间约束 资源约束 Discrete Hopfield neural netuork Multiprocessor job scheduling Timing constraints Resource constraints
  • 相关文献

参考文献5

  • 1[1]Zhang C S , Yan P F, Chang T. Solving Job-Shop Scheduling Problem with Priority Using Neural Network[J]. IEEE Int. Conf. Neural Networks, 1991: 1361-1366.
  • 2[2]Chang C Y, Jeng M D. Experimental Study of a Neural Model for Scheduling Job Shops[J]. IEEE Int. Conf. System, Man, Cybernetics, 1995, 1: 536-540.
  • 3[3]Yang S X, Wang D W: Constraint Satisfaction Adaptive Neural Network and Heuristic Combined Approaches for Generalized Job-Shop Scheduling[J]. IEEE Trans. on Neural Network, 2000, 11: 474-486.
  • 4[4]Huang Y M, Chen R M. Scheduling Multiprocessor Job with Resource and Timing Constraints Using Neural Networks[J]. IEEE Trans. on Syst., Man, Cybernetic, 1999, 29, 490-502.
  • 5[5]Hopfield J J, Tank D W. Neural Computation of Decision in Optimization Problems[J]. Biol. Cybern., 1985, 52: 141-152.

同被引文献55

  • 1余冬华,郭茂祖,刘晓燕,刘国军.改进选择策略的烟花算法[J].控制与决策,2020,35(2):389-395. 被引量:11
  • 2吴怡,刘民,吴澄.JSSP基本约束特点分析及调度算法[J].清华大学学报(自然科学版),2004,44(10):1380-1383. 被引量:5
  • 3李彤,王春峰,王文波,宿伟玲.求解整数规划的一种仿生类全局优化算法——模拟植物生长算法[J].系统工程理论与实践,2005,25(1):76-85. 被引量:147
  • 4张长水,阎平凡.解Job-shop调度问题的神经网络方法[J].自动化学报,1995,21(6):706-712. 被引量:38
  • 5[1]Zhou D N,et al.A neural network approach to job shop scheduling[J].IEEE Trans on Neural Networks,1991,2(1):175-179.
  • 6[2]Zhang Changshui,Yan Pingfan.A Genetic Algorithm of Solving Jop-Shop Scheduling Problem[J].Chinese Journal of Electronics,1995,4 (1):48-52.
  • 7[3]Abade A,Binder Z Ladet P.A neural network for solving jop shop scheduling problem[C].IFAC/IFIP Conference on Management and Control of Production and Logistic,1997:435-442.
  • 8FOO Y S, TAKEFUJI Y. Stochastic neural networks for job-shop scheduling: Parts 1 and 2[J].in Proceedings of the IEEE International Conference on Neural Networks,1998, 2: 275-290.
  • 9GILATI S, IYENGAR S S, TOOMARIAN N,et al. Nonlinear neural networks for deterministic scheduling[J]. in Proceedings of the IEEE International Conference on Neural Networks,1982, 4: 745-752.
  • 10FOO Y S, TAKEFUJI Y. Integer-linear programming neural networks for job-shop scheduling[M]. Proceeding IEEE IJCNN, San Diego. 1988.889-894.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部