摘要
设环A是环B的扩张环,即B是与A有相同单位的A的子环.记P(A,B)是由所有相对投射模构成的范畴.对于扩张B→A,本文介绍相对Gorenstein投射模的概念.由于Gorenstein投射模与投射模具有紧密的联系,并且关于Gorenstein维数有较好的性质,本文想给出相对Gorenstein投射模和相对投射模之间类似的关系.本文主要结果是:(1)设B→A是具有相同单位的环的扩张,则由所有相对Gorenstein投射模构成的范畴是相对可解的.(2)设B→A是具有相同单位的环的扩张,若gl.dim(A,B)≤n,则每一个相对Gorenstein投射模都是相对投射的,其中gl.dim(A,B)表示所有A-模的相对投射维数的上确界.
Let A be an extension ring of a ring B, that is, B is a subring of A with the same identity. We denote by T^(A, B) the category of all the relatively projective mod- ules. For this extension B A, we introduce relatively Gorenstein-projective modules. As Gorenstein-projective modules are closely related to projective modules and there are some good results about Gorenstein dimensions, we want to give a similar relationship between rela- tively Gorenstein-projective modules and relatively projective modules. The main results are: (1) Let B A be an extension of rings with the same identity. Then the category of all the relatively Gorenstein projective modules is relatively resolving. (2) Let B A be an extension of rings with the same identity. If gl.dim(A, B) 〈 n, then every relatively Gorenstein-projective module is relatively projective, where gl.dim(A, B) represents the supreme of relatively projective dimension of all the A-modules.
出处
《数学进展》
CSCD
北大核心
2017年第5期717-728,共12页
Advances in Mathematics(China)