期刊文献+

相对Gorenstein投射模(英文) 被引量:1

Relatively Gorenstein-projective Modules
原文传递
导出
摘要 设环A是环B的扩张环,即B是与A有相同单位的A的子环.记P(A,B)是由所有相对投射模构成的范畴.对于扩张B→A,本文介绍相对Gorenstein投射模的概念.由于Gorenstein投射模与投射模具有紧密的联系,并且关于Gorenstein维数有较好的性质,本文想给出相对Gorenstein投射模和相对投射模之间类似的关系.本文主要结果是:(1)设B→A是具有相同单位的环的扩张,则由所有相对Gorenstein投射模构成的范畴是相对可解的.(2)设B→A是具有相同单位的环的扩张,若gl.dim(A,B)≤n,则每一个相对Gorenstein投射模都是相对投射的,其中gl.dim(A,B)表示所有A-模的相对投射维数的上确界. Let A be an extension ring of a ring B, that is, B is a subring of A with the same identity. We denote by T^(A, B) the category of all the relatively projective mod- ules. For this extension B A, we introduce relatively Gorenstein-projective modules. As Gorenstein-projective modules are closely related to projective modules and there are some good results about Gorenstein dimensions, we want to give a similar relationship between rela- tively Gorenstein-projective modules and relatively projective modules. The main results are: (1) Let B A be an extension of rings with the same identity. Then the category of all the relatively Gorenstein projective modules is relatively resolving. (2) Let B A be an extension of rings with the same identity. If gl.dim(A, B) 〈 n, then every relatively Gorenstein-projective module is relatively projective, where gl.dim(A, B) represents the supreme of relatively projective dimension of all the A-modules.
作者 常会敏
出处 《数学进展》 CSCD 北大核心 2017年第5期717-728,共12页 Advances in Mathematics(China)
关键词 相对Gorenstein投射模 相对整体维数 相对可解 relative Gorenstein projective modules relative global dimension relativelyresolving
  • 相关文献

参考文献1

二级参考文献31

  • 1Agoston,I.,Happel,D.,Lukacs,E.and Unger,L.,Finitistic dimension of standardly stratified algebras,Comm.Algebra,2000,28(6):2745-2752.
  • 2Auslander,M.,Representation Dimension of Artin Algebras,Queen Mary College Mathematics Notes,Queen Mary College,London,1971.
  • 3Auslander,M.and Reiten,I.,On a generalized version of the Nakayama conjecture,Proc.Amer.Math.Soc,1975,52:69-74.
  • 4Auslander,M.and Reiten,I.,Applications of contravariantly finite subcategories,Adv.in Math.,1990,85:111-152.
  • 5Auslander,M.,Reiten,I.and Smalo,S.,Representation Theory of Artin Algebras,Cambridge Studies in Advanced Mathematics 36,Cambridge University Press,1995.
  • 6Bass,H.,Finitistsic dimension and a homological generalization of semiprimary rings,Trans.Amer.Math.Soc.,1960,95:466-488.
  • 7Coelho,F.U.and Platzeck,M.I.,On the representation dimension of some classes of algebras,J.Algebra,2004,275(2):615-628.
  • 8Colby,R.R.and Fuller,K.R.A note on the Nakayama conjectures,Tsukuba J.Math.,1990,14:343-352.
  • 9Erdmann,K.,Holm,T.,Iyama,O.and Schroer,J.,Radical embedding and representation dimension,Adv.in Math.,2004,185(1):159-177.
  • 10Green,E.L.,Kirkman,E.and Kuzmanovich,J.,Finitistic dimensions of finite-dimensional monomial algebras,J.Algebra,1991,136(1):37-50.

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部