摘要
针对现有测谎方法识别率低的缺陷,将人工免疫算法和超限学习机相结合,提出了一种基于AIA-ELM的N400诱发电位测谎新方法。将24名被试分成犯罪组和对照组,提取多通道的N400峰值、平均幅值、中值频率作为特征向量。采用AIA-ELM算法对被试的探测刺激与无关刺激进行分类,犯罪组被试的识别率为97.60%。实验结果表明,本方法能较有效地进行谎言区分,为N400测谎提供了一种新的参考依据。
Aiming at the defects of the low recognition rate of lie detection, this paper proposes a new method of N400 evoked potential polygraphy based on AIA-ELM, which integrates the artificial immune algorithm and the extreme learning machine. 24 subjects are divided into a crime group and a control group respectively to extract the multi-channel peak value, average amplitude and median frequency of N400, and all of them just constitute the eigenvectors. AIA-ELM algorithm is applied to classify the probe stimulus and the irrelevant stimulus, and the recognition rate of crime group is 97.60%. Experimental results show that this method can distinguish lies effectively and provide a new reference for lie detection based on N400.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期12-16,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金(61672021)
陕西省自然科学基金(2017JM6108)
关键词
N400
超限学习机
人工免疫算法
测谎
N400
extreme learning machine
artificial immune algorithm
lie detection