期刊文献+

微流控技术制备球形发射药及其表征 被引量:15

Preparation and Characterization of Spherical Propellant by Microfluidic Technology
下载PDF
导出
摘要 利用微流控技术,采用T型微通道装置,以水为连续相,以硝化棉的乙酸乙酯溶液为分散相,制备球形发射药。研究了连续相和分散相的流速比以及分散相的溶棉比对发射药成球效果的影响。结果表明:固定溶棉比(溶剂与硝化棉的质量比)为50∶2.5,连续相流速(Qc)为1000μL·min^(-1),分散相流速(Qd)在30~100μL·min^(-1)时,所得液滴均匀稳定,且随着分散相流速增大,所得球形药的粒径从270μm增大至306μm;固定水油两相流速比为1000μL·min^(-1):100μL·min^(-1),溶棉比在50∶2.0~50∶3.0,分散相溶棉比越小,所得球形药的粒径越大,其粒径从250μm增大到350μm。扫描电子显微镜(SEM)结果表明,利用微流控技术制得的硝化棉球形药表观形貌规整,粒径分布窄,单分散性好。 A T-shaped micro-channel device with continuous phase of aqueous solution and dispersed phase of ethyl acetate solu- tion was used to prepare the spherical propellants based on the microfluidic technology. The effects of flow rate ratios and nitrocellulose/solvent ratios on the preparation of spherical propellants were studied, respectively. Results showed that when the nitrocel- lulose/solvent ratio was fixed to 50 : 2.5 and the flow rate of continuous phase was fixed to 1000 μL · min-1 , the particle size was increased from 270 μm to 306 μm with the increase of the flow rate of dispersed phase from 30 μL ·min-1 to 100 μL · min-1. When the flow rate ratio of the two phase was fixed to 1000 μL · min-1 : 100 μL ·min-1 and the nitrocellulose/solvent ratio of the dispersed phase was from 50 : 2.0 to 50 : 3.0, the particle size was increased from 250 μm to 350 μm. The characterization results of SEM show that the nitrocellulose spheres prepared by the microfluidic technology had regular morphology, narrow size distribution and good monodispersity.
出处 《含能材料》 EI CAS CSCD 北大核心 2017年第9期717-721,共5页 Chinese Journal of Energetic Materials
基金 基金项目:新型结构含能材料四川省省属高校科研创新团队(15TD0014)
关键词 微流控技术 球形发射药 流速比 溶棉比 单分散性 microfluidic technology spherical propellant flow rate ratio nitrocellulose/solvent ratio monodispersity
  • 相关文献

参考文献2

二级参考文献29

  • 1蔺向阳,潘仁明,程向前,薛耀辉,袁志峰.报废“双迫”药改制射钉弹用球扁药新工艺研究[J].含能材料,2005,13(4):242-245. 被引量:2
  • 2刘培生.多孔材料孔率的测定方法[J].钛工业进展,2005,22(6):34-37. 被引量:40
  • 3JOANICOT M, AJDARI A. Applied physics droplet control for microfluidics [J]. Sci, 2005, 309 (5736): 887-888.
  • 4ZHENG B, ROACH L S, ISMAGILOV R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets [J]. J Am Chem Soc, 2003, 125 (37): 11170-11171.
  • 5XU S, NIE Z, SEO M, et al. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition [J]. Angewandte Chem-Interl Edition, 2005, 44 (25):3799-379.
  • 6BURNS M A, JOHNSON B N, BRAHMASANDRA S N, et al. An integrated nanoliter DNA analysis device [J]. Sci, 1998, 282 (5388): 484-487.
  • 7SRINIVASAN V, PAMULA V, POLLACK M, et al. A digital microfluidic biosensor for multianalyte detection [C] .16th IEEE Annual International Conference on Micro Electro Mechanical Systems. Kyoto, Japan, 2003: 327-330.
  • 8THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device [J]. Phys Rev Lett, 2001, 86 (18):4163-4166.
  • 9GARSTECKI P, FUERSTMAN M J, WHITESIDES G M. Nonlinear dynamics of a flow-focusing bubble generator: An inverted dripping faucet [J]. Phys Rev Lett, 2005, 9423 (23): 4502-4502.
  • 10CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chem Engineering Sci, 2004, 59 (15): 3045-3058.

共引文献16

同被引文献164

引证文献15

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部