期刊文献+

基于改进权重非局部均值图像滤波方法与实现 被引量:2

Research on the Non-local Mean Image Filtering Algorithm Based on Improved Weight
下载PDF
导出
摘要 图像滤波是计算机图像处理领域中极为重要的预处理环节,目的是消除混杂在图像中的干扰因素,改善图像质量,强化图像表现特征。在传统非局部均值滤波算法基础上,提出了基于改进权重的非局部均值图像滤波算法,以欧式距离高斯加权为基础,配以图像之间的自相似性,在图像领域灰度值的矩阵间使用,充分地将图形领域间的自相似性发挥出来。实验结果表明,基于改进权重的非局部均值图像去噪算法比传统的非局部均值去噪算法保持更有效的图像结构信息。 Image filtering is an important step in the field of computer image processing, the purpose is to eliminate the confounding factors in the image, improve the image quality, and strengthen the image performance. The non local mean denoising uses the self similarity between the image domains to construct the weights, and then to restore the image, the smaller is the distance, the greater is the weight. This paper proposed the non lo- cal means denoising algorithm based on improved image weights, the Euclidean distance weighted Gauss based, with self similarity between images and its use in the field of image gray value matrix, full graphic field of self similarity between play. Experimental results showed that the non local mean image denoising algorithm based on the improved weight is more effective than the traditional non local mean denoising algorithm.
作者 张玉荣 ZHANG Yu - rong(School of Information Engineering, Wuhan University of Science and Technology, Wuhan 430070, China Electronics Information Department, Huishang Vocational College, Hefei 230061, China)
出处 《淮阴工学院学报》 CAS 2017年第3期1-5,共5页 Journal of Huaiyin Institute of Technology
基金 安徽省高校自然科学重点项目(KJ2016A685) 安徽省教育厅质量工程项目(2014jxtd110 2015tszy089)
关键词 加权权证 非局部均值 图像滤波 图像相似性 weighted warrant non local means image filtering image similarity
  • 相关文献

参考文献5

二级参考文献44

  • 1Buades A, Coll B, Morel J M. A Review of Image Denoising Algorithms with a New One[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 2Buades A, Coll B, Morel J M. Image Denoising Methods. A New Nonlocal Principle[J]. SIAM Review, 2010, 52(1): 113-147.
  • 3Lai Rui, Dou Xuan-xuan. Improved Non-local Means Filtering Algorithm for Image Denoising[C] //Proc. of CISP’10. Yantai, China: [s. n.] , 2010.
  • 4Tian Jing, Yu Weiyu, Xie Shengli. On the Kernel Function Selec- tion of Nonlocal Filtering for Image Denoising[C] //Proc. of IEEE Int’l Conf. on Machine Learning and Cybernetics. Kunming, China: [s. n.] , 2008.
  • 5Buades A, Coll B, Morel J M. Nonlocal Image and Movie Denoising[J]. International Journal of Computer Vision, 2008, 76(2): 123-139.
  • 6RudinL I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992,60(1):259--268.
  • 7Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of the Computer Vision Sixth International Confer- ence.Bombay,India:Narosa Publishing Hose,1998:839-846.
  • 8Portilla J,Strela V. Image denoising using scale mixtures of Gaussians in the wavelet domain [J].IEEE Transactions on Image Processing, 2003,12(11):1338-1351.
  • 9Buades A, Coil B, Morel J M.A Review of hnage Denoising Algorithms with a New One[J].Multiscale Modeling&Simulation,2005,4(2) 490-530.
  • 10Tian Jing, Yu Weiyu, Xie Shengli.On the Kernel Function Selection of Nonlocal Filtering for Image Denoising[C]//Proc.of IEEE Int'l Conf.on M achine Learning and Cybernetics. Kunm ing,China : [s.n.], 2008.

共引文献54

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部