期刊文献+

基于决策向量的分辨矩阵构造方法 被引量:2

The Method based on Decision Vector for Generating Discernibility Matrix
原文传递
导出
摘要 Skowron分辨矩阵是代数观点属性约简模型的一种演化,其本质在于保持系统中非冲突对象与其他对象的可分辨关系不变,不能刻画常见的非代数观点属性约简准则.属性约简准则的本质体现为保持决策信息系统的某种特定可分辨特性不发生变化,决策信息系统具有多方面可分辨特性,单一属性约简准则仅能刻画其中某一特性.为将不同的属性约简准则运用统一的分辨矩阵形式加以描述,在定义条件等价类的决策向量基础上,构建了决策向量简化决策系统,进而设计满足不同属性约简准则的分辨矩阵及分辨函数,给出其与对应准则属性约简模型的等价性证明,推理证明与仿真实例说明了该方法的可行性与有效性. The attribute reduction model based reduction model under algebra view. Its essence lies objects and other objects, on Skowron's discernibility matrix is equivalent to attribute in preserving the discernible information between consistent but can't describe the attribute reduction criterion of non-algebra view. The essence of attribute reduction criterion is to maintain a certain discernibility characteristic of decision information system, the decision information system has many different discernibility characteristics, and the single attribute reduction criterion only describe one of them. In order to describe different attribute reduction criterions using uniform discernibility matrix, the conception of decision vectors for condition equivalence classes were defined and decision vector discernibility matrix was constructed based on this conception, then the discernibility matrix and discernibility function satisfying different reduction criterion were designed respectively. The equivalence between different reduction criterions and corresponding discernibility matrix was strictly proved. The Reasoning proof and simulation example shows the feasibility and effectiveness of the proposed method.
出处 《湖南科技大学学报(自然科学版)》 北大核心 2017年第2期62-69,共8页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 河南省高等学校重点科研资助项目(17A520027) 河南工程学院博士基金资助项目(D2013003)
关键词 属性约简 约简准则 决策向量 分辨矩阵 attribute reduction reduction criterion decision vector discernibility matrix
  • 相关文献

参考文献4

二级参考文献25

  • 1王国胤.不相容决策信息系统属性核的研究[J].上海交通大学学报,2004,38(12):2094-2098. 被引量:13
  • 2[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 3[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 4[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 5[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 6[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 7[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 8Pawlak Z. Rough sets:theoretical aspects of reasoning about data[M]. Boston:Kluwer Academic Publishers,1991.
  • 9Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification [A]. LNAI 1424,RSCTC' 98[C]. Springer, 1998.
  • 10Slezak D. Approximate reducts in decision tables[A]. Proc of IPMU' 96[C]. Granada,Spain, 1996, 3 : 1159-1164.

共引文献217

同被引文献18

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部