期刊文献+

一种基于MPI+CUDA的高性能天文数据分发方法

A High-Performance Distribution Method of Astronomical Data Based on MPI + CUDA
下载PDF
导出
摘要 天文海量数据的出现给天文软件的开发带来了诸多挑战。近年来,随着并行计算技术的发展,MPI+GPU逐渐成为当前高性能天文数据处理的主要模式。针对太阳高分辨图像重建中如何提高重建性能这一问题,对其中的数据读取与数据分发方法进行了系统研究。传统的MPI并行处理时,主进程将原图切割成子块,随后将子块发送到各子进程重建,重建后的结果返回主进程。当子进程数量较大且计算节点数量较少时,这种数据分发过程显著增加通讯时长,影响整个重建过程的效率。提出MPI+CUDA的一种树状数据分发方法,给出了算法的基本思路与实现方法。实验结果表明,树状分发方式比一般采用的平行分发方式可以提高速度近一倍,成果对天文海量数据开发处理有一定的借鉴作用。 The appearance of massive astronomical data has brought a lot of challenges to the development of astronomy software. In recent years, with the development of parallel computing technology, MPI + GPU mode has become the main mode for current high performance astronomical data processing gradually. For the problem of how to improve reconstruction performance in reconstruction of solar high resolution image, this paper has made systematic research on data reading and data distribution method. During traditional MPI parallel processing, master process cuts original image into sub-blocks, and then delivers sub-blocks into each sub-process for reconstruction, the results after reconstruction will be returned to the master process. When the number of sub-process is big and calculation nodes are few, this data distribution process will increase the time for communication significantly and affect the efficiency of the whole reconstruction process. This paper has proposed a tree data distribution method under MPI + CUDA and offered basic ideas and realization method of the algorithm. Experimental results have shown that tree distribution mode nearly doubles the speed than generally adopted plane distribution mode; its achievements provide certain reference for the development and processing of massive astronomical data.
出处 《天文研究与技术》 CSCD 2017年第4期481-487,共7页 Astronomical Research & Technology
基金 国家自然科学基金(U1531132 U1631129 11403009)资助
关键词 图像重建 MPI+GPU 数据分发 Image reconstruction The MPI + GPU Data distribution
  • 相关文献

参考文献5

二级参考文献43

  • 1罗近涛,李斌,陈岚,郝龙飞,张秀忠.上海天文台25 m射电望远镜首次单天线脉冲星观测[J].中国科学院上海天文台年刊,2011(1):129-135. 被引量:5
  • 2陈勇,陈国良,李春生,何家华.SMP机群混合编程模型研究[J].小型微型计算机系统,2004,25(10):1763-1767. 被引量:19
  • 3张锦雄.矩阵相乘并行算法的MPI实现[J].广西科学院学报,2004,20(4):217-219. 被引量:3
  • 4赵永华,迟学斌.基于SMP集群的MPI+OpenMP混合编程模型及有效实现[J].微电子学与计算机,2005,22(10):7-11. 被引量:33
  • 5NVIDIA CUDA compute unified device architecture:programming guide[Z].Version2.Obeta2,2008.
  • 6Message Passing Interface Forum.MPI-2:Extensions to the message-passing interface[S].1997.
  • 7WANG C F, SAHNI S. Matrix multiplication on the OTIS-mesh op- toeleetronic computer[ J]. IEEE Transactions on Computers, 2001, 50(7) :635 -645.
  • 8ALONSO P, REDDY R, LASTOVETSKY A. Experimental study of six different implementations of parallel matrix multiplication on heterogeneous computational clusters of multicore processors[ C]//18th Euromicro Conference on Parallel, Distributed and Network-based Processing. Washington, DC: IEEE Computer Society, 2010:263 - 270.
  • 9GROPP W, LUSK E, DOSS N, et al. A high-performance, portable implementation of the MPI message-passing interface standard[ J]. Parallel Computing, 1996, 22(6) : 789 - 828.
  • 10NVIDIA Corporation. CUDA Programming Guide 2.3 [ M]. [ s. 1 ] : NVDIA Coporation, 2009:11 - 13.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部