期刊文献+

Single-molecule analysis in an electrochemical confined space 被引量:4

Single-molecule analysis in an electrochemical confined space
原文传递
导出
摘要 Electrochemical analysis of single molecules is a method with the strong ability of the enhanced efficiency and ultra-sensitivity.Here,we demonstrate that the electrochemical confined space could efficiently convert single molecule characteristics into measurable electrochemical signatures with high temporal resolution.The human telomere repeat sequence T8 was used as a probe to determine the electrochemical confined effect in a nanopore.Our results show that the nanopore with comparable confined space of the telomere repeat sequence exhibits the most distinguishable single-molecule signals which suggest the folded conformation of T8.This method will greatly extend the lifetime of a metastable conformation for a single biomolecule by strong analyte-nanopore interactions,which brings the new insight into the understanding of the biomolecule's function at single-molecule level. Electrochemical analysis of single molecules is a method with the strong ability of the enhanced efficiency and ultra-sensitivity. Here, we demonstrate that the electrochemical confined space could efficiently convert single molecule characteristics into measurable electrochemical signatures with high temporal resolution. The human telomere repeat sequence T8 was used as a probe to determine the electrochemical confined effect in a nanopore. Our results show that the nanopore with comparable confined space of the telomere repeat sequence exhibits the most distinguishable single-molecule signals which suggest the folded conformation of T8. This method will greatly extend the lifetime of a metastable conformation for a single biomolecule by strong analyte-nanopore interactions, which brings the new insight into the understanding of the biomolecule's function at single-molecule level.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第9期1187-1190,共4页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(21421004,21505043,21327807) the Fundamental Research Funds for the Central Universities(222201718001,222201717003,222201714012)
关键词 ELECTROCHEMICAL CONFINED space nanopores SINGLE-MOLECULE analysis DNAs electrochemical confined space nanopores single-molecule analysis DNAs
  • 相关文献

同被引文献9

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部