期刊文献+

一类PS_(ap)向量bent函数的存在性

On existence of vectorial bent functions from the PS_(ap) class
原文传递
导出
摘要 Bent函数是非常特殊的组合对象,在序列、差集、编码和密码等领域都有重要应用.近年来,形如Trnk(P(x))的bent函数吸引了大量目光,其中k=1或k=n/2且P(x)∈F2n[x].本文在前人研究的基础上进一步研究二项式函数F(x)=Tr_k^n(x^(2^k-1)+ax(r(2~k-1)))(k=n/2≥2)的向量bent性,其中r为奇数.对于r|2~k+1的情形,本文得到了F满足向量bent性的一个充要条件,从而,对所有n和a∈F_(2~n)~*都完全确定了F的向量bent性.而对于r2k+1的情形,Muratovi-Ribi等(2014)曾提出过不存在此类向量bent函数的猜想.通过引入Lucas公式,对r分别等于5、7、9及所有的n和a∈F_(2~n)~*,本文也完全得到了F的向量bent性.特别地,本文找到了一些反例,否定了Muratovi-Ribi等(2014)提出的猜想. Bent functions are extremal combinatorial objects with wide applications. Recently, the research of bent functions of the form Trnk(P(x)) with k = 1 or k = n/2 and P(x) ∈ F_2~n [x] has attracted much attention.In this paper, based on the existing results, we further study the vectorial bent property of the binomial trace functions F(x)=Tr_k^n(x^(2^k-1)+ax(r(2~k-1))) with k = n/2≥2, r odd and a ∈ F_(2~n)~*. For the case r | 2k+ 1, we obtain a necessary and sufficient condition for F to be vectorial bent and thus completely determine the vectorial bent property of F for all n and all a ∈ a∈F_(2~n)~*. While for the case r 2k+ 1, a conjecture on the nonexistence of binomial trace bent functions has been proposed by Muratovi-Ribi et al.(2014). By employing the powerful Lucas formula, we completely determine the vectorial bent property of F for all n, all a ∈ a∈F_(2~n)~*, when r equals 5,7 and 9. In particular, we find a few counter examples to the conjecture.
出处 《中国科学:数学》 CSCD 北大核心 2017年第9期995-1010,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:61202471和61672166) 上海市优秀学术带头人计划(批准号:16XD1400200) 上海市科技创新行动计划(批准号:16JC1402700)资助项目
关键词 向量bent函数 迹二项式函数 布尔函数 多项式系数Lucas公式 vectorial bent function binomial trace function Boolean function multinomial coefficient Lucas formula
  • 相关文献

参考文献2

二级参考文献28

  • 1KNyberg.Perfect Nonlinear S-boxes[A].In Advances in Cryptology Eurocrypt'91[C].Berlin:Springer-Verlag,1992.378-383.
  • 2T Satoh,T Iwata and Kaoru K.On Cryptographically Secure Victoria Boolean functions.Proc of Asiacrypt'99,Lecture Notes in Computer Science[C].Berlin:Springer-Verlag,1999.(1716):20-28.
  • 3张文英 滕吉红 李世取.布尔函数的谱分解式及其在k维bent函数构造中的应用[A]..第三届中国信息和通信安全学术安全会议论文集-CCICS2003[C].北京:北京科学出版社,2003.290-296.
  • 4Zheng Y L,J Pieprzyk,J Seberry.HAVAL A One Way Hashing Algorithm with Variable Length Output[A].Advances in Cryptology AUSCRYPT'92[C].Australia,1993,(718):280-291.
  • 5O S Rothaus.On Bent Functions[J].Journal of Combine theory,1976,(20):300-305.
  • 6C Carlet.A Larger Class of Cryptographic Boolean Functions Via a Study of the Maiorana-McFarland Construction[A].CRYPTO2002[C].Berlin,2002.549-564.
  • 7曾祥勇 张焕国 王丽娜.AES S盒的设计分析[A]..第三届中国信息和通信安全学术安全会议论文集CCICS2003[C].北京:科学出版社,2003.186-193.
  • 8Lidl R,Mullen G L,Turnwald G.Dickson polynomials. Pitman Monographs and Surveys in Pure and Applied Math- ematics . 1993
  • 9Kumar P V.On bent sequences and generalized bent functions. . 1982
  • 10Helleseth T,Kholosha A.Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Transactions on Information Theory . 2006

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部