期刊文献+

多目标跟踪的分布式MIMO雷达最少阵元选取算法 被引量:6

Minimal antenna selection algorithm in distributed MIMO radar system for multiple targets tracking
下载PDF
导出
摘要 针对分布式多输入多输出(multiple input multiple output,MIMO)雷达在多任务模式下对目标快速跟踪的需求,结合"低慢小"目标的特点,提出了基于多目标位置跟踪的收发阵元选取算法。首先,以选取最小的阵元集合为代价函数,在指定的位置估计精度的约束下,建立了阵元选取的优化模型。然后,将该优化问题看作成背包问题,提出了改进的阵元选取算法对模型进行求解。仿真结果表明,所提算法能够在降低系统计算量的同时,实现系统可接受的选取性能。此外,目标位置估计精度要求越高,其优势越明显。因此,所提算法有利于对多目标的快速跟踪。 Considering the demand of targets fast tracking under the multiple tasks mode in distributed multiple input multiple output (MIMO) radar system, and combining the characteristics of the low altitude, slow speed, small target (LSS-target), an antenna selection algorithm based on multiple targets localization is proposed. Firstly, a cost function selecting the smallest antenna collection is described. Then, under the constraint of given location accuracy, an antenna selection model is established as a knapsack problem (KP) and the corre- sponding optimization problem is solved by a modified algorithm proposed in this paper. The simulation results indicate that the proposed algorithm may achieve acceptable selection performance with lower computational complexity. Moreover, the higher the target localization accuracy is, the more obvious the advantages are. Thus the proposed algorithm contributes to multiple targets fast tracking.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第10期2228-2233,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(41301481)资助课题
关键词 分布式多输入多输出雷达 多目标跟踪 阵元选取 “低慢小”目标 distributed multiple input multiple output (MIMO) radar multiple target tracking antenna selection low altitude, slow speed, small target (LSS-target)
  • 相关文献

参考文献2

二级参考文献22

  • 1何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析[J].电子学报,2005,33(B12):2441-2445. 被引量:97
  • 2周万幸,吴呜亚,胡明春.双(多)基地雷达系统[M].北京:电子工业出版社,2011:1-30.
  • 3Van Trees H L, Bell K L, and Wang Y. Bayesian Cramer-Rao bounds for multistatic radar[C]. Proceedings of the Waveform Diversity Design, Washington, 2006: 856-859.
  • 4Godrich H, Petropulu A, and Poor H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247-260.
  • 5Godrich H, Petropulu A, and Poor H V. Power allocation strategies for target localization in distributed multiple-radar architecture[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240.
  • 6Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 7Hero A O and Cochran D. Sensor management: past, present, and future[J]. IEEE Sensors Journal, 2011, 11(12): 3064- 3075.
  • 8Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge: UK, Cambridge University, 2004: 67-127.
  • 9Rao S S. Ei~gineering Optimization: Theory and Practice[M], 3rd Ed, New York: Wiley, 1996: 383-425.
  • 10Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Norwood, MA: Artech House, 2004: 1-82.

共引文献87

同被引文献13

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部