期刊文献+

图像恢复问题的梯度稀疏化正则方法 被引量:1

Gradient sparse based regularization model for image restoration
下载PDF
导出
摘要 针对图像恢复中边缘损坏及细节丢失等问题,从分析梯度直方图的分布特征及梯度稀疏性最佳表示出发,提出了一种基于梯度稀疏性的正则方法,建立了具有梯度先验信息的图像恢复模型。该模型不仅能够增强图像的细节特征,而且能够在去除模糊及噪声与保持图像边缘之间取得很好的平衡。设计了一种新的优化算法对模型进行求解。实验结果表明,新算法快速有效且收敛性好,新模型能够在很好地去除模糊和噪声的同时,有效保留图像边缘及纹理等信息。 In order to alleviate the defects in image restoration, e.g. , the damage of the edges and the loss of the details, a new gradient sparsity regularization model is derived based on the analysis of the gradient histogram and the best penalty in sparse representation. The proposed model can not only highlight the image detail effectively but also achieve a good balance between blur and noise removal and edge preservation. A new optimization algorithm is designed to solve the new model. Simulation experiments on image denoising and deblurring confirm that the numerical method is fast and efficient, the proposed regularization model can well preserve the significant edges and textures when effectively removing the blur and noise.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第10期2353-2358,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61362129 61379030 61472303) 中央高校基本科研业务费专项资金(NSIY21)资助课题
关键词 图像恢复 梯度直方图 梯度稀疏化 优化算法 image restoration gradient histogram gradient sparse optimization algorithm
  • 相关文献

参考文献3

二级参考文献34

  • 1杨朝霞,逯峰,田芊芊.自适应双正则参数法在图像恢复中的应用[J].中山大学学报(自然科学版),2005,44(4):20-23. 被引量:5
  • 2谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报,2006,34(1):59-64. 被引量:27
  • 3鲁志波,胡国恩.基于结构张量的图像插值方法[J].计算机应用,2006,26(7):1570-1572. 被引量:3
  • 4Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990,12(7) : 629 - 639.
  • 5Weckert J, Scharr H. A scheme for coberence-en hancing diffusion filtering with optimized rotation invariance[J]. Journal of Visual Communitation and Image Representation, 2002, 13(1/2) :103 - 118.
  • 6Carmona R A, Zhong Siren. Adoptive smoothing respecting feature directions[J]. IEEE Trans. on Image Processing, 1998, 7(3) :353 - 358.
  • 7Weickert J. Coherencc-enhancing diffusion filtering[J]. International Journal of Computer Vision, 1999,31 (2/3) : 111 - 127.
  • 8Bettahar S, Stambouli A B. Shock filter coupled to curvature diffusion for image denoising and sharpening[J]. Imageand Vision Computing;, 2008,26(11) : 1481 - 1489.
  • 9Weickert J. Coherence enhancing shock filters [ J ]. Lecture Noses in Computer Science, 2003,2781 : 1 - 8.
  • 10Lee J S, Kuo Y M,Chung P C, et al. Naked image detectionbased on adaptive and extensible skin color mode [J]. PatternRecognition, 2007. 40(8) : 2261 - 2270.

共引文献20

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部