期刊文献+

基于广义回归网络的铝电解阳极效应预报 被引量:3

Research of Anode Effect Prediction of Aluminum Electrolysis Cell Based on Generalized Regression Neural Network
下载PDF
导出
摘要 应用广义回归神经网络对当前预焙槽铝电解阳极效应预报问题进行了研究。在简述广义回归神经网络的基本结构基础上,利用广义回归神经网络对铝电解槽阳极效应进行系统辨识建模。重点探讨了建模过程中模型样本结构的选择,实验分析了样本容量对模型预报准确率的影响。取自某铝厂400 k A大型预焙槽的单槽运行现场数据样本对模型进行训练和检验,结果表明该方法阳极效应预报准确率平均在90%以上,预报提前量可以达到半个小时。现场多台电解槽的建模测试结果进一步论证了该模型和样本结构的合理性和有效性,由此证实该方法在保证较高预报准确率同时,具有较好的普适性。 This paper aims to research the anode effect (AE) prediction of pre-baked aluminum electrolysis cell with the generalized regression neural network (GRNN). The structures and advantages of GRNN are introduced, then the anode effect system of aluminum electrolysis cell is modeled by the method of system identification based on GRNN. The structure of samples is analyzed emphatically in the process of modeling, and the influence of sample size to model prediction accuracy is analyzed by experiments. The AE model based on GRNN is trained and tested by sufficient samples which are extracted from the production data of the 400 kA aluminum electrolysis cell. It's proved that the accuracy rate of the AE prediction is more than 90% on average while predicting AE half an hour before the AE moment through this method. Results from experiments with sample data from different cells show that this analytic method is logical and effective, and has extensive applicability while keeping high prediction accuracy.
出处 《控制工程》 CSCD 北大核心 2017年第9期1756-1762,共7页 Control Engineering of China
基金 国家863计划重点基金(2013AA041002)
关键词 阳极效应 阳极效应预报 铝电解 广义回归神经网络 系统辨识 Anode effect anode effect prediction aluminum electrolysis cell generalized regression neural network system identification
  • 相关文献

参考文献10

二级参考文献71

  • 1周铁托,张建.大中型预焙铝电解槽自适应控制过程的研究(下)[J].轻金属,1994(5):37-41. 被引量:11
  • 2刘建新.浅谈铝电解生产中阳极效应的危害性[J].冶金丛刊,2005(2):41-44. 被引量:3
  • 3曾水平,刘业翔,蔡祺风,梅炽.铝电解槽中三维电流分布的数值模拟[J].有色金属,1996,48(3):88-93. 被引量:2
  • 4席灿明.模糊技术在铝电解过程控制中的开发应用.中国有色金属学会第三届学术会议论文集[M].,.127-133.
  • 5吴良刚 高阳.人工神经网络专家系统的研究与展望[J].中国有色金属学报,1996,6:1-21,18.
  • 6张泰山 袁艳 等.铝电解槽神经网络专家系统[J].中国有色金属学报,1996,6(1):87-90.
  • 7Meger H J.阳极效应预报[J].轻金属,1987,5.
  • 8邱竹贤.铝电解[M].2版.北京:冶金工业出版社,2005.
  • 9He Yongyong, Chu Fulei, Zhong Binglin. A hierarchical evolutionary algorithm for constructing and training wavelet networks [ J ]. Neural Computing & Applications,2002,10:357 - 366.
  • 10Cheng Y L, Huang J C, Yang W C. Modeling word perception using the Elman network [ J ]. Neurocomputing,2008,71 (16/17/18) :3150 - 3157.

共引文献33

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部