期刊文献+

具有Logistic增长和饱和CTL免疫反应的时滞HIV模型的稳定

Stability analysis of delayed HIV model with Logistic growth and saturated CTL-immune response
下载PDF
导出
摘要 研究具有Logistic增长和饱和CTL免疫反应及其免疫时滞的HIV病毒模型。讨论在不同情况下无病平衡点E_0、无免疫感染平衡点E_1、免疫感染平衡点E_2的存在条件,通过分析特征方程,建立三个平衡点的局部渐近稳定性;讨论免疫感染平衡点E_2附近存在Hopf分支的充分条件,通过规范型方法及中心流定理,分析Hopf分支的方向和稳定性。数值模拟验证了主要结论的正确性。 Consider a delayed HIV model with Logistic growth and saturated CTL-immune response. The existence conditions of the infection-free equilibrium Eo, the immune-exhausted equilibrium E1 and the infected equilibrium with immunity E2 are shown. The locally asymptotically stability conditions of the trivial equilibrium are established by analyzing the characteristic equations. The sufficient condition under which there appears Hopf bifurcations near the infected equilibrium with immunity E2. The direction and stability of bifurcation periodic solutions are also studied by the norm-form method and central flow theo- rem. Finally, numerical simulations are carried out to illustrate the mathematical conclusions.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2017年第4期385-396,共12页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(61174209 11471034)
关键词 局部渐近稳定性 HOPF分支 LOGISTIC增长 免疫反应 local asymptotical stability Hopf bifurcation Logistic growth immune response
  • 相关文献

参考文献2

二级参考文献23

  • 1HERZ A V, BONHOEFFER S, ANDERSON R M, et al. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay [J]. Proceedings of the National Academy of Science of the United States of America, 1996, 93(14) : 7247 -7251.
  • 2NELSON P W, PERELSON A S. Mathematical analysis of delay differential equation models of HIV -1 infection [ J ]. Mathematical Bioseience, 2002, 179 (1) : 73 -94.
  • 3XU R. Global dynamics of an HIV-I infection model with distributed intraeellular delays [ J ]. Computers and Mathematicals with Application, 2011,61(9) : 2799 -2805.
  • 4XU R. Global stability of an HIV-1 infection model with saturation infection and intraceUular delay[J]. Journal of Mathematical Analysis and Ap- plications, 2011,375 ( 1 ) : 75 - 81.
  • 5NOWAK M, BANGHAM C. Population dynamics of immune response to persistent viruses[ J]. Science, 1996, 272 (5258) : 74 -79.
  • 6LIU W M. Nonlinear oscillation in models of immune response to persistent viruses [ J]. Theoretical Population Biology, 1997, 52 (3) : 224 - 230.
  • 7WANG X, TAO Y D, SONG X Y. Global stability of a virus dynamics model with Beddington-De Angelis incidence rate and CTL immune response [J]. Nonlinear Dynamics, 2011,66(4) : 825 -830.
  • 8ZHU H Y, ZOU X F. Dynamics of a HIV - 1 infection model with cell-mediated immune response and intracellular delay[ J]. Discrete and Contin- uous Dynamical Systems-Series B, 2009, 12(2) : 511 -524.
  • 9NAKATA Y. Global dynamics of a cell mediated immunity in viral infection models with distributed delays [ J]. Journal of Mathematical Analysis and Applications, 2011, 375( 1 ) : 14 -27.
  • 10EBERT D, ZSCHOKKE-ROHRINGER C D, CARIUS H J. Dose effects and density-dependent regulation of two microparasites of Daphnia magna [ J ]. Oecologia, 2000, 122 (2) : 200 - 209.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部