期刊文献+

同频干扰对相关值计算的影响 被引量:2

Effect of same frequency interference on correlation value computation
下载PDF
导出
摘要 为研究同频干扰对相关值计算的影响,以周期信号为研究对象,建立了相关值计算模型。根据信号模型,从理论上分析了同频干扰影响相关值计算的机理。通过仿真实验,总结信号分别为单个频率成分和多个频率成分时,由同频干扰引起的相关系数峰值误差随同频干扰成分的幅值及其与源信号的相位差(0°~360°)的具体变化规律。结果表明:相关系数峰值误差变化趋势关于相位差180°对称分布,且同频干扰分量幅值在信号中所占比例越大,相关系数峰值误差也越大。 To study the effect of same frequency interference on correlation value computation, correlation analysis model is set up with periodic signals as the researching object, based on which the effect mecha- nism of the same frequency interference on correlation value computation is analyzed theoretically. Through the simulation experiments of single-frequency and multi-frequency signals, the specific changing rule of correlation coefficient peak value error caused by same interference components are summarized following the amplitude of identical interference components and the phase difference (0° -360°) between original signal and same interference components respectively. It is found that the variation trend of correlation coefficient peak value error is symmetrically distributed by phase difference (180°) , and cor- relation coefficient peak value error become more under the condition of the higher proportion of the amplitude of same interference in signals.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2017年第4期486-491,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(2012AA0758) 内蒙古工业大学科学研究资助项目(X201301)
关键词 同频干扰 相关值计算 相关系数峰值 same frequency interference correlation value computation correlation coefficient peak value
  • 相关文献

参考文献6

二级参考文献39

  • 1胡晓宇,张森,唐劲松.主动声纳抗同频干扰技术研究[J].舰船电子工程,2008,28(12):65-67. 被引量:10
  • 2孙进才,朱维杰,肖卉,孙轶源,王慧慧.基于信号相位匹配原理的广义相关时延估计[J].自然科学进展,2005,15(1):103-109. 被引量:12
  • 3曾捷,梁大开,杜艳,曾振武.基于反射光强度检测的棱镜SPR传感器[J].光电子.激光,2007,18(2):159-163. 被引量:5
  • 4黄长艺 严普强.机械工程测试技术基础[M].北京机械工业出版社,1996..
  • 5于永芳 郑仲民.检测技术[M].机械工业出版社,1997..
  • 6蒋洪民 张庆.动态测试理论与应用[M].东南大学出版社,1988..
  • 7PETER B, RON F. Polyphase sequences with low autocorrelation[J], IEEE Transactions on information theory, 2005, 51(4): 1564-1567.
  • 8JAIN A K, DUIN R P W, JIANCHANG M. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 9DAVID R H, SANDOR S, JOHN S. Canonical Correlation Analysis: An Overview with Application to Learning Methods[J]. Neural Computation, 2004, 16(12): 2639-2664.
  • 10PEZESHKI A, AZIMI-SADJADI M R, SCHARF L L. Undersea Target Classification Using Canonical Correlation Analysis[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 948-955.

共引文献20

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部