期刊文献+

圆锥形仿生蛾眼抗反射微纳结构的研制 被引量:7

Development of bionic moth-eye anti-reflective conical micro-nano structure
下载PDF
导出
摘要 采用时域有限差分(FDTD)法对中红外波段(3~5μm)硅基底的圆锥形仿生蛾眼微纳结构进行了仿真模拟。通过对微纳结构占空比、周期和刻蚀深度等参数的分析,获得了具有良好抗反射特性的微纳结构的组合参数。为了更好地指导实际加工,对不同参数进行了公差分析。制作中应用二元曝光技术和反应离子刻蚀技术在硅基底上制备得到该圆锥形仿生蛾眼微结构,并且使用热场发射扫描电子显微镜得到了该微结构的表面形貌图。采用红外成像光谱仪对单面微结构的测试结果表明,仿生蛾眼微结构的反射率在中红外波段约为5%。 The finite difference time domain (FDTD) method was adopted for simulation of the conical bionic moth-eye micro-nano structure on silicon substrate in middle infrared band(3-5 μm). A parameter- optimized combination of the micro-nano structure which was of low reflection was obtained by analyzing the parameters of the micro-nano structure, such as fill factor, period and etching depth. In order to guide the actual processing better, tolerance analysis of different parameters was carried out. The binary exposure and reactive ion etching technology were applied to fabricate the conical bionic moth-eye micro structure on silicon substrate in processing. The surface topography of the micro structure was acquired by thermal field emission scanning electron microscopy. The test of the silicon wafer with single-sided micro structure polishing by the infrared imaging spectrometer demonstrates that the reflectivity of the bionic moth-eye micro structure vibrates approximately 5% in middle infrared band.
出处 《红外与激光工程》 EI CSCD 北大核心 2017年第9期108-114,共7页 Infrared and Laser Engineering
基金 吉林省自然科学基金(140101JC010015467)
关键词 蛾眼 抗反射微纳结构 反射率 时域有限差分法 反应离子刻蚀 moth-eye anti-reflection micro-nano structure reflectivity finite difference time domain (FDTD) method reactive ion etching
  • 相关文献

参考文献6

二级参考文献58

  • 1刘汉英,刘春明,肖志斌,王莹.空间太阳电池用光学薄膜[J].光学仪器,2006,28(4):164-167. 被引量:13
  • 2U. Schulz. Review of modern techniques to generate antireflective properties on thermoplastic polymers [J]. Appl. Opt. , 2006, 45(7): 1608-1618.
  • 3U. Schulz, U. B. Schallenberg, N. Kaiser. Antireflection coating design for plastic optics [J]. Appl. Opt. , 2002, 41(16) : 3107-3110.
  • 4S. Sepeur, N. Kunze, B. Werner et al.. UV curable hard coatings on plastics[J].Thin Solid Films, 1999, 351 (1-2) : 216-219.
  • 5G. F. Tjandraatmadja, L. S. Burn, M. C. Jollands. Evaluation of commercial polycarbonate optical properties after QUV-A radiation the role of humidity in photodegradation [J]. Polyrn. Degr. Stab. , 2002, 78(3), 435-448.
  • 6凯泽,普克.光学干涉薄膜[M].刘旭译.杭州:浙江大学出版社,2008.252-273.
  • 7U. Schulz, K. Lau, N. Kaiser. Antireflection coating AR-hard with UV protective properties for polycarbonate [C]. Optical Interference Coatings, 2007, ThD4.
  • 8K. Lau. Plasma Assisted Evaporation Processes for the Production of Hard Optical Coatings on Bisphenol-A Polycarbonate [D ]. Halle-Wittenberg: Martin Luther-Universitat, 2006, 57-74.
  • 9Gledhill S E, Scott B, Gregg B A. Organic and nano-structured composite photovoltaics: An overview [ J ]. J. Mater. Res. , 2005, 20(12):3167-3179.
  • 10Forrest S R. The limits to organic photovoltaic cell efficiency [ J]. MRS Bull. , 2005, 30( 1 ) :28-32.

共引文献40

同被引文献52

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部