期刊文献+

一种基于蚁群算法的生物序列并行比对方法

A parallel alignment method for biological sequences based on ant colony algorithm
下载PDF
导出
摘要 生物序列比对是生物信息领域的重要课题,比对结果的合理性和正确性关系到基于比对结果研究的正确性。在保证正确性的前提下利用并行计算充分挖掘计算潜力对提高比对效率有重要意义。针对双序列的全局比对问题,提出了基于蚁群算法的双序列比对并行化方案。对耗时最多的搜索比对路径和信息素更新两个步骤给出了基于共享内存模型的并行化方法。"天河二号"上OpenMP实验结果表明,8线程并行情况下,加速比可达5.03,且序列越长性能越高。 Biological sequence alignment is an important issue in the field of bioinformatics, and the rationality and correctness of alignment results are crucial to the researches based on sequence alignment. It is of great significance to exploit the computational potential with the help of parallel computing to improve alignment efficiency under the premise of ensuring alignment correctness. We propose a parallel alignment scheme based on the ant colony algorithm for the global sequences alignment problem. Aiming at the two most time-consuming steps in the ant colony algorithm, the search of comparison path and the pheromone update, we present a parallel method based on the shared memory model. Experiments on Tianhe II by the OpenMP show that with eight threads in parallel, the speedup can achieve 503, and the longer the sequence is, the better the performance is.
作者 李娟 汤德佑 傅娟 LI Juan TANG De-you FU Juan(School of Software Engineering,South China University of Technology,Guangzhou 510006 Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology,Hunan University of Technology,Zhuzhou 412008 School of Medicine,South China University of Technology,Guangzhou 510006,China)
出处 《计算机工程与科学》 CSCD 北大核心 2017年第9期1610-1616,共7页 Computer Engineering & Science
基金 国家自然科学基金(61201100) 广州市科技计划(201508010029)
关键词 生物序列比对 并行算法 蚁群算法 OPENMP biological sequence alignment parallel algorithm ant colony algorithm OpenMP
  • 相关文献

参考文献3

二级参考文献19

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2梁栋,霍红卫.自适应蚁群算法在序列比对中的应用[J].计算机仿真,2005,22(1):100-102. 被引量:20
  • 3陈娟,陈崚.求解多重序列比对问题的蚁群算法[J].计算机应用研究,2007,24(1):25-30. 被引量:3
  • 4霍红卫,肖智伟.基于最大权值路径算法的DNA多序列比对方法[J].软件学报,2007,18(2):185-195. 被引量:8
  • 5Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man, and Cybenaetics, 1996, 26(1 ): 29-41.
  • 6Dorigo M, Stutzle T. Ant Colony Optimization[M]. Cambridge, USA: MIT Press, 2004.
  • 7Stutzle T. Parallelization Strategies for Ant Colony OptimizationlC]// Proc. of the 5th International Conf. on Parallel Problem Solving from Nature. [S. l.]: Springer-Verlag, 1998.
  • 8Bullnheimer B, Kotsis G, Strauss C. Parallelization Strategies for Ant System[M]. [S. l.]: Kluwer Academic Publishers, 1998.
  • 9Islam M T, Thulasiraman P, Thulasiram R K. A Parallel Ant Colony Optimization Algorithm for All-pair Routing in Manets[C]//Proc. of the 17th International Symposium on Parallel and Distributed Processing. Washington, USA: IEEE Computer Society, 2003.
  • 10Randall M, Lewis A. A Parallel Implementation of Ant Colony Optimization[J]. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421-1432.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部