摘要
基于某焦化公司烟气脱硫脱硝一体化装置的运行数据,研究此过程的静态建模方法。依据工艺原理及相应数据预处理方法构建数据集,通过K-均值聚类算法实现对过程工况的划分与样本集的约简,利用神经网络对脱硫与脱硝过程的每一工况分别进行静态建模,仿真结果表明此方法及相应神经网络模型有效。
Based on the running data of the integrated desulfurization and denitrification unit, static modeling is studied for the process. The data set is established according to the process and data preprocessing method. Classification of the working conditions and simplification of the sample set are realized by K-means clustering algorithm. Static modeling of each and every working condition is established with the help of neural network. The simulation result shows that this method and corresponding neural network are effective.
作者
黎景平
李亚宁
吴小平
刘松清
王学雷
Li Jingping Li Yaning Wu Xiaoping Liu Songqing Wang Xuclei(Jingdezhen Coking Industry Group, Jingdezhen 333000, China Institute of Automation, Chinese Academy of Science,Beijing 100190, China Jiangxi Yongyuan Energy-Saving Environmental Protection Technologies Group Co., Ltd., Jingdezhen 333000, China)
出处
《燃料与化工》
2017年第5期52-56,共5页
Fuel & Chemical Processes
关键词
焦化
脱硫脱硝
K-均值聚类
RBF神经网络
Coking
Desulfurization and denitrification
K-means clustering
RBF neural network