1Helbing D, Farkas I, Vicsek T. Simulating Dynamical Features of Escape Panic[J]. Nature, 2000, 407 (6803): 487-490.
2Yu W, Johansson A. Modeling Crowd Turbulence by Many-particle Simulations[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2007,76(4): 1-5.
3Helbing D, Johansson A, Al-Abideen H Z. Dynamics of Crowd Disasters: An Empirical Study[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2007, 75(4): 1-7.
4Helbing D, Farkas P M I J, Vicsek T. Simulation of Pedestrian Crowds in Normal and Evacuation Situations Normal and Evacuation Situations[J]. Pedestrian and Evacuation Dynamics, 2002(2): 21- 58.
5Lin P. A Granular Dynamic Method for Modelling the Egress Pattern at an Exit[J]. Fire Safety Journal, 2007(42): 377-383.
6Pelechano N, Allbeck J M, Badler N I. Controlling Individual Agents in High-density Crowd Simulation[C]//Popovic D M J. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Switzerland: Eurographics Association Aire-la-Ville, 2007: 99-108.
7Sud A. Real-time Navigation of Independent Agents Using Adaptive Roadmaps[C]// Stephen N Spencer. Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology. Irvine CA: The ACM Symposium on Virtual Reality Software and Technology, 2007: 99-106.
8Helbing D, Molnar P. Social Force Model for Pedestrian Dynamics[J]. Phys Rev E Star Phys Plasmas Fluids Relat Interdiscip Topics, 1995, 51 (5): 4282-4286.
9Helbing D. Traffic and Related Serf-driven Many-particles Systems[J]. Reviews of Modem Physics(Rev. Mod. Phys), 2001, 73(4): 1067-1128.
10Apel M. Simu2ation of Pedestrian Flows Based on the Social Force Model Using the Verlet Link Cell Algorithm[D]. Poznan: Poznan University of Technology, 2004.