摘要
利用上下解的单调迭代方法,考虑二阶多时滞微分方程-u″(t)=f(t,u(t),u(t-τ_1),u(t-τ_2),…,u(t-τ_n)),t∈Rω-周期解的存在性,其中:f:R×R^(n+1)→R连续,关于t以ω为周期;τ_1,τ_2,…,τ_n为正常数.通过建立新的极大值原理,构造方程ω-周期解的单调迭代求解程序,证明了ω-周期解的存在性与唯一性.
Using the monotone iterative method of upper and lower solutions,we considered the existence ofω-periodic solutions for the second order differential equation with multiple delays
-u″(t)=f(t,u(t),u(t-τ1),u(t-τ2),…,u(t-τn)), t∈ R,
where f:R×R^n+1→R was a continuous function which wasω-periodic on t,and τ1,τ2,…,τn were positive constants.By establishing a new maximum principle,we constructed a monotone iterative procedure to seek theω-periodic solutions of the equation,and proved existence and uniqueness ofω-periodic solutions.
作者
朱俐玫
李永祥
ZHU Limei LI Yongxiang(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Chin)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第5期1077-1083,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11261053
16611071)
甘肃省自然科学基金(批准号:1208RJZA129)
关键词
时滞微分方程
单调迭代方法
周期解
differential equation with delay
monotone iterative method
periodic solution