期刊文献+

可穿透障碍散射问题的数值方法 被引量:1

Numerical Method for Penetrable Obstcales Scattering Problems
下载PDF
导出
摘要 利用Trefftz类算法,给出一种数值求解一类时谐波被可穿透障碍散射问题的方法.该方法基于最小二乘算法,采用Fourier-Bessel函数近似场的局部性态,并利用多极展开逼近散射场在无穷远处的性态建立模型.结果表明,该方法适用于多个散射体情形以及散射体为多连通区域情形,并且无需将空间截断,在粗糙网格下通过增加基底数目即可达到较高精度.数值算例验证了算法的有效性. By using a Trefftz class algorithm,we gave a numerical method for solving the scattering problem of a class of time-harmonic wave by penetrable obstacle.The method was based on the leastsquares algorithm,Fourier-Bessel functions were used to approximate the local state of the field,and a model was established by using multipole expansion to approximate the behavior of scattered field at infinity.The results show that the method is appropriate for the scatters whose domain may be multiple or even multi-connected.Moreover,it does not need to truncate the space,and high accuracy can be achieved by adding the number of the basis functions in the coarse mesh.Numerical examples are carried out to illustrate the effectiveness of the proposed algorithm.
作者 栾天 李枭 LUAN Tian LI Xiao(School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin Province, China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第5期1167-1169,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年基金(批准号:11701013) 吉林省自然科学基金(批准号:20160101264JC) 吉林省教育厅科学技术研究项目(批准号:JJKH20170022KJ 2015155) 吉林省教育科学"十三五"规划一般项目(批准号:GH170094)
关键词 可穿透障碍散射 Trefftz类算法 Fourier-Bessel函数 多极展开 penetrable obstacle scattering Trefftz class algorithm Fourier-Bessel function multipole expansion
  • 相关文献

参考文献2

二级参考文献27

  • 1E. Bet;.lig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, 257 (1992), 189-195.
  • 2D. Courjon, C. Bainier, Near field microscopy and near field optics, Rep. Pro. Phys., 57 (1994), 989-1028.
  • 3P. Carney, .J. Schotland, Near-field tomography, in Inside out: Inverse Problems and Application, G. Uhlmann (ed.), Cambridge U. Press, England, 2003, pp. 133-168.
  • 4P. Monk. Q.D. Wang, A leaset-squares method for the Helmholtz equation, Comput. Meihs, Appl. Mer:h. Etujrq., 175 (1999), 121-1:36.
  • 5A.H. Barnett, T. Betcke, An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons, J. Sci. Comput., 32 (2011), 1417-144l.
  • 6Fl.X. Zheng, F.M. Ma and D.Y. Zhang, A least-squares non-polynomial finite element method for solving the polygonal-line grating problem, J. Math. Anal. Appl., 397 (2013), 550-560.
  • 7J. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, Comput. Meth. Appl. Meeh. Eng., 139 (1996), 289-314.
  • 8I. Babuska, J.M. Melenk, The partition of unity method, Int. J. Numer. Meths. Eng., 40 (1997), 727-758.
  • 9C.J. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinous Galerkin methods: analysis of the h-version, Math. Model. Numer. Anal., 43 (2009), 297-332.
  • 10R. Hiptmair, A. Moilor and L. Perugia, Plane wave discontinous Galerkin method for the 2D Helmholtz equation: analysis of the p-version, J. Numer. Anual., 49 (2011), 264-284.

共引文献5

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部