期刊文献+

Surface ozone scenario and air quality in the north-central part of India 被引量:1

Surface ozone scenario and air quality in the north-central part of India
原文传递
导出
摘要 Tropospheric pollutants including surface ozone(O3), nitrogen dioxide(NO2), carbon monoxide(CO) and meteorological parameters were measured at a traffic junction(78°2′ E and 27°11′ N) in Agra, India from January 2012 to December 2012. Temporal analysis of pollutants suggests that annual average mixing ratios of tropospheric pollutants were: O3— 22.97 ± 23.36 ppbV,NO2— 19.84 ± 16.71 ppb V and CO — 0.91 ± 0.86 ppm V, with seasonal variations of O3 having maximum mixing ratio during summer season(32.41 ± 19.31 ppbV), whereas lowest was found in post-monsoon season(8.74 ± 3.8 ppbV). O3 precursors: NO2 and CO, showed inverse relationship with O3. Seasonal variation and high O3 episodes during summer are associated with meteorological parameters such as high solar radiation, atmospheric temperature and transboundary transport. The interdependence of these variables showed a link between the daytime mixing ratios of O3 with the nighttime level of NO2. The mixing ratios of CO and NO2 showed tight correlations, which confirms the influence of vehicular emissions combined with other anthropogenic activities due to office/working hours, shallowing, and widening of boundary layer. FLEXTRA backward trajectories for the O3 episode days clearly indicate the transport from the NW and W to S/SE and SW direction at Agra in different seasons. Tropospheric pollutants including surface ozone(O3), nitrogen dioxide(NO2), carbon monoxide(CO) and meteorological parameters were measured at a traffic junction(78°2′ E and 27°11′ N) in Agra, India from January 2012 to December 2012. Temporal analysis of pollutants suggests that annual average mixing ratios of tropospheric pollutants were: O3— 22.97 ± 23.36 ppbV,NO2— 19.84 ± 16.71 ppb V and CO — 0.91 ± 0.86 ppm V, with seasonal variations of O3 having maximum mixing ratio during summer season(32.41 ± 19.31 ppbV), whereas lowest was found in post-monsoon season(8.74 ± 3.8 ppbV). O3 precursors: NO2 and CO, showed inverse relationship with O3. Seasonal variation and high O3 episodes during summer are associated with meteorological parameters such as high solar radiation, atmospheric temperature and transboundary transport. The interdependence of these variables showed a link between the daytime mixing ratios of O3 with the nighttime level of NO2. The mixing ratios of CO and NO2 showed tight correlations, which confirms the influence of vehicular emissions combined with other anthropogenic activities due to office/working hours, shallowing, and widening of boundary layer. FLEXTRA backward trajectories for the O3 episode days clearly indicate the transport from the NW and W to S/SE and SW direction at Agra in different seasons.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第9期72-79,共8页 环境科学学报(英文版)
基金 the University Grant Commission(UGC)New Delhi for funding(Project No:F.15–45/12(SA–II))
关键词 Surface ozone Ozone precursors Diurnal and seasonal variation PCA Ozone transport Surface ozone Ozone precursors Diurnal and seasonal variation PCA Ozone transport
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部