期刊文献+

高效计算网格壁面距离的KD树方法 被引量:3

KD tree method for efficient wall distance computation of mesh
下载PDF
导出
摘要 计算流体动力学的一些领域中经常要用到流场点到壁面的最小距离,为了提高壁面距离计算的精度和效率,将KD树应用于非结构网格的壁面距离计算,计算了若干三维外形的壁面距离,结果表明:基于KD树的网格壁面距离计算方法鲁棒性好,计算效率和结果精度高,适应复杂外形的能力强;算法的通用性好,可以拓展应用到多种网格类型。 In some fields of computational fluid dynamics,the nearest distance from a certain point in the flow field to the wall surface is usually required. In order to improve the precision as well as the efficiency of the computation result,the KD tree method was applied to the wall distance computation of unstructured mesh,and then the wall distances of several three dimensional configurations were computed. Results show that the method computing wall distances based on KD tree can achieve the capability of great robustness,high efficiency and precision,and is suitable for complex configuration. Besides,the method has good universality so that it can be applied to many other types of mesh.
作者 郭中州 何志强 夏陈超 陈伟芳 GUO Zhongzhou HE Zhiqiang XIA Chenchao CHEN Weifang(School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China Shanghai Institute of Astronautics System Engineering, Shanghai 201109, China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第4期21-25,共5页 Journal of National University of Defense Technology
基金 国家重点基础研究发展计划资助项目(2014CB340201)
关键词 KD树 壁面距离 非结构网格 KD tree wall distance unstructured mesh
  • 相关文献

参考文献2

二级参考文献15

  • 1陈丽萍,陈燕,胡德金.一种快速完备的自由曲线和曲面间最短距离求取算法[J].上海交通大学学报,2003,37(z1):41-44. 被引量:7
  • 2Menter F R. Improved two-equation k-w turbulence models for aerodynamic flows [ R ]. NASA-TM-103975, NASA, 1992.
  • 3Spalart P R, Allmaras S. A one-equation turbulence model for aerodynamic flows[ R]. AIAA- 92-0439, AIAA, 1992.
  • 4Wigton L B. Optimizing CFD codes and algorithms for use on Cray computer[C]//Caughey D A, Hafez M M. Frontiers of Computational Fluid Dynamics. Singapore: World Scientific Publishing, 1998: 1-15.
  • 5Spalding D B. Calculation of turbulent heat transfer in cluttered spaces [ C ]//Unpublished paper presented at the l Oth International Heat Transfer Conference. Brighton, UK, 1994.
  • 6Sethian J A. Fast marching methods[J].SIAM Review , 1999, 41(2) : 199-235.
  • 7Tucker P G, Rumsey C L, Spalart P R, Bartels R E, Biedron R T. Computations of wall distances based on differential equations[R]. AIAA-2004-2232, AIAA, 2004.
  • 8Tucker P G. Assessment of geometric multilevel convergence and a wall distance method for flows with multiple internal boundaries[ J]. Applied Mathematical Modelling, 1998, 22: 293- 311.
  • 9Menter F R, Egorov Y. A scale-adaptive simulation model using two-equation models [ R ]. AIAA-2005-1095, AIAA, 2005.
  • 10Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier- Stokes equations[J]. AIAA Journal, 1988, 26(9) : 1025-1025.

共引文献8

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部