期刊文献+

基于鲁棒高阶容积滤波的无人机相对导航状态估计方法 被引量:3

Unmanned aerial vehicle relative navigation method based on robust high degree cubature filtering
下载PDF
导出
摘要 由于无人机相对导航系统具有非线性强、噪声非高斯的特点,传统的基于卡尔曼滤波算法设计的相对导航滤波器存在估计失准甚至发散的问题。考虑到高阶容积卡尔曼滤波和最大熵滤波算法分别在解决非线性问题和非高斯问题时的优势,利用最大熵滤波的量测更新方法对高阶容积卡尔曼滤波的测量更新方程进行了改进,将传统的量测更新问题转换成了线性衰退的求解问题,避免了对测量噪声进行高斯假设,同时解决了系统非线性和量测噪声非高斯的问题。进行了相应的数学仿真,仿真结果表明:所提算法的估计精度超过了高阶容积卡尔曼滤波和最大熵滤波算法的,验证了算法的有效性。 Due to the strong-nonlinearity and non-Gaussianity of the UAV( unmanned aerial vehicle) relative navigation system,the accuracy of the traditional relative navigation filter,which is designed based on the Kalman filtering algorithm,decreases or even diverge. In view of the advantages of HCKF( high degree cubature Kalman filter) and MCKF( maximum correntropy Kalman filter) in coping with nonlinear problems and non-Gaussian problems,respectively,the measurement update equation was modified by the measurement update method of MCKF,and the traditional measurement update problem was recast as a linear regression problem. In addition,the Gaussian assumption of the measurement noise was avoided,the system nonlinearity and measurement noise non-Gaussianity were solved at the same time. The simulation was conducted,and the simulation results indicated that RHCF is superior to HCKF and MCKF. Hence,the effectiveness of the proposed algorithm is verified.
作者 金红新 杨涛 王小刚 卢鑫 李璞 JIN Hongxin YANG Tao WANG Xiaogang LU Xin LI Pu(College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China Tactical Weapons Division, China Aeademy of Launch Vehicle Technology, Beijing 100076, China School of Astronautics, Harbin Institute of Technology, Harbin 155600, China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第4期139-143,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61304236)
关键词 无人机 相对导航 鲁棒高阶容积滤波 非高斯噪声 unmanned aerial vehicle relative navigation robust high degree cubature filtering non-Gaussian noise
  • 相关文献

参考文献3

二级参考文献42

  • 1张树春,胡广大,刘思华.关于UKF方法的新探索及其在目标跟踪方面的应用[J].控制理论与应用,2006,23(4):569-574. 被引量:7
  • 2季斌南.长航时无人机的特点、作用及发展动向[J].国际航空,1997(2):28-30. 被引量:29
  • 3Bangash Z A, Sanchez R P, Ahmed A. Aerodynamics of formalion flight[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2003 : 1-10.
  • 4Hamer M. Formation flying for future planes[J]. New Scientist Magazine, 1995,8(12) :8- 12.
  • 5Darrah M A, Niland W M, Stolarik B M. Multiple UAV dynamic task allocation using mixed integer linear programming in a SEAD mission[C]//American Institute of Aeronautics and Astronautics. 2006:1- 11.
  • 6Iannotta B. Vortex draws flight research forward [J]. Aerospace America, 2002,40(3) :26 30.
  • 7Ray R J, Cobleigh B R, Vachon M J, et al. Flight test techniques used to evaluate performance benefits during formation flight[R]. AIAA-2002- 4492,2002.
  • 8Saber R O,Murray R M. Distributed structural stabiliza tion and tracking for formations of dynamic multi agents [C]//Proceedings of the 41st IEEE Conference on Deci sion and Control. 2002: 209- 215.
  • 9Yang E F, Masuko Y, Mita T. Dual controller approach to three dimensional autonomous formation control[J]. Journal of Guidance, Control, and Dynamics, 2004, 27 (3): 336- 346.
  • 10Stipanovic D M, Inalhan G R, Tomlin C J. Decentralized overlapping control of a formation of unmanned aerial ve hicles[C]// Proceedings of the 41st IEEE Conference on Decision and Control. 2009:2829 -2835.

共引文献128

同被引文献25

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部