期刊文献+

基于多元化指标与BP网络结合的回采面瓦斯安全分析 被引量:1

Safety analysis of gas in working face based on combination of diversification index and BP network
下载PDF
导出
摘要 介绍通风方式与瓦斯抽取排放方式的基础上,结合回采工作面的瓦斯产生机理,给出了基于多元化指标判定与BP网络识别的瓦斯安全状态定义,同时对相邻煤层瓦斯、煤壁瓦斯以及落煤三者产生的涌出现象进行分析。引入MATLAB仿真软件进行验证,结果表明:在建立BP辨识模型的基础上,多元化指标只能较为准确的反映回采面瓦斯量的动态变化趋势。 Based on introduction of ventilation and gas extraction emission combining with gas generation mechanism of stope face, gas safety status was defined on the basis of diversification index and BP network. At the same time, Gas emission from three adjacent seams, coal wall gas and coal falling were analyzed. MATLAB simulation software was used to make verification. The results showed that diversification index could only reflect the dynamic trend of gas quantity in mining face more accurately through establishing BP identification model.
作者 樊文涛
出处 《煤炭与化工》 CAS 2017年第5期6-8,13,共4页 Coal and Chemical Industry
关键词 回采工作面 瓦斯安全状态 动态辨识 评价多元化 stope face gas safety status dynamic identification evaluation pluralism
  • 相关文献

参考文献3

二级参考文献23

  • 1窦仁菊,李平,孙银山.并行遗传神经网络及其在机械故障诊断中的应用[J].辽宁工学院学报,2005,25(2):78-81. 被引量:3
  • 2刘晓琴,王大志,杨青.一种基于BP神经网络的传感器故障诊断方案[J].沈阳理工大学学报,2006,25(4):16-19. 被引量:5
  • 3罗若谷,陈敏.BP神经网络泛化能力改进研究[J].福建电脑,2007,23(1):40-41. 被引量:6
  • 4ZHAO Ying,NAN Jun,CUI Fu-yi,GUO Liang.Water quality forecast through application of BP neural network at Yuqiao reservoir[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(9):1482-1487. 被引量:21
  • 5Maniezzo, V.Genetic evolution of the topology and weight distribution of neural networks[J].IEEE Transactions of Nerual Networks,1994,5(1) :39-53.
  • 6Kitano, H. Neurogentic learning: an integrated method of designing and training neural networks using genetic algorithms[J].Physica D,1994,75(2):225-228.
  • 7Van Rooij,A.J.F.,L.C.Jain,R.P.Johnson.Neural network training using genetid alogrithms Singapore[J].World Scientific,1996.
  • 8胡昌华等.基于MATLAB的系统分析与设计[M]西安电子科技大学出版社,1999.
  • 9N. Ampazis,S.T. Perantonis.Two highly efficient second order algorithms for training feedforward networks. IEEE Transactions on Neural Networks . 2002
  • 10XIE Z,DU Q,REN F,et al.Improving the forecast precision of river stage spatial and temporal distribution using drain pipeline knowledge coupled with BP artificial neural networks:a case study of Panlong River,Kunming,China[J].Nat Hazards,2015,77(2):1081-1102.

共引文献32

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部