期刊文献+

一类矩阵特征值的不等式及其在Fischer不等式证明中的应用(英文)

An eigenvalue inequalityof a class of matrices and its applications in provingthe Fischer inequality
下载PDF
导出
摘要 Hadamard和Fischer不等式在矩阵研究中起重要作用.已有大量文献研究此两不等式的新证明、推广、细化及应用.本文研究了和实对称正定矩阵相关的一类矩阵的特征值,并建立了关于这类矩阵特征值乘积范围的一个不等式,利用此不等式证明了行列式的Fischer和Hadamard不等式. The Hadamard inequality and Fischer inequality play an important role in the matrix study.Many articles have addressed these inequalities providing new proofs,noteworthy extensions,generalizations,refinements,counterparts and applications.This paper discusses the eigenvalues of a class of matrices related to the real symmetric positive definite matrix and establishes an inequality of the eigenvalues.By using this inequality,the Fischer determinant inequality and Hadamard determinant inequality are proved.
作者 张华民 殷红彩 ZHANG Huamin YIN Hongcai(Department of Mathematics ~ Physics, Bengbu University, Benghu 233030,Anhui Province, China School of Management Science and Engineering, Anhui University of Finance & Economics, Bengbu 233000, Anhui Province, China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2017年第5期511-515,共5页 Journal of Zhejiang University(Science Edition)
基金 Supported by Natural Science Foundation of Anhui Provincial Education Department(KJ2016A458) Excellent Personnel Domestic Visiting Project(gxfxZD2016274)
关键词 正定矩阵 特征值 特征向量 行列式不等式 positive definite matrix eigenvalue eigenvector determinant inequality
  • 相关文献

参考文献3

二级参考文献13

  • 1Dixon D J. How good is Hadamard's inquality for determinants?[J]. Can. Math. Bull., 1984, 27(3): 260-264.
  • 2Beckenbach E F, Bellman R. Inequalities[M]. New York: Springer-Verlag, 1961.
  • 3Gilbert S. Linear algebra and its applications[M]. New York: Academic Press, 1976.
  • 4张晓东,SIAM J Matrix Anal Appl,1993年,14卷,3期,705页
  • 5ENGEL G M, SCHNEIDER H. The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonlcity[ J]. Linear and Multilinear Algebra, 1976,4(3) : 155-176.
  • 6JOHNSON C R,NEWMAN M.How bad is the Hadamard determinantal bound? [J] .J Res NatL Bur Stand Seet. B 1974,78:167-169.
  • 7JOHNSON C R, MARKHAM T. Compression and Hadamard power inequalities for matrices [ J]. Linear and Multilinear Algebra, 1985, (18) :239-344.
  • 8DIXON J D.How good is Hadamard's inequality for determinants? [J] .Can Math Bull,1984,27(3):260-264.
  • 9REZNIKOV A G. Determinant inequalities with applications to isoperimatrical inequalities[ J]. Operator Theory Adv Appl, 1995,77:239- 244.
  • 10WOLKOWITZ H, STYAN GPH. Bounds for eigenvalues usingma traces [ J]. Linear Algebra Appl,1980,29:471-506.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部