摘要
【目的】对Gerstewitz非线性标量化函数的性质作进一步研究与应用。【方法】利用代数内部和向量闭包研究Gerstewitz非线性标量化函数的一些性质。【结果】给出了Gerstewitz非线性标量化函数的一些性质,进而利用这些性质建立了集值向量优化问题有效点和弱有效点的非线性标量化结果。【结论】将拓扑内部推广到代数内部情形,推广了Gerstewitz非线性标量化函数的一些性质与应用。
[Purposes]The properties and applications of Gerstewitz nonlinear scalarization function are studied further.[Methods]Using the algebraic interior and the vector closure,some properties of Gerstewitz nonlinear scalarization function are studied.[Findings]Some properties are given for the Gerstewitz nonlinear scalarization function and some nonlinear scalarization results of(weakly)efficient points are established by making use of these properties for a class of vector optimization problems with set-valued maps.[Conclusion]Some results in the sense of topological interior are generalized to the case of algebraic interior,and some properties and applications of Gerstewitz nonlinear scalarization function are generalized.
作者
李伟佳
朱巧
赵克全
LI Weijia ZHU Qiao ZHAO Kequan(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期1-5,共5页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11431004
No.11671062
No.11271391)
重庆市基础与前沿研究计划项目(No.cstc2015jcyjA00027)
重庆市教委科学技术研究项目(No.KJ1500303)
重庆市研究生科研创新项目(No.CYS17174)