期刊文献+

Gerstewitz非线性标量化函数的性质及其在向量优化中的应用 被引量:2

Properties of Gerstewitz Nonlinear Scalarization Function and Applications in Vector Optimization
原文传递
导出
摘要 【目的】对Gerstewitz非线性标量化函数的性质作进一步研究与应用。【方法】利用代数内部和向量闭包研究Gerstewitz非线性标量化函数的一些性质。【结果】给出了Gerstewitz非线性标量化函数的一些性质,进而利用这些性质建立了集值向量优化问题有效点和弱有效点的非线性标量化结果。【结论】将拓扑内部推广到代数内部情形,推广了Gerstewitz非线性标量化函数的一些性质与应用。 [Purposes]The properties and applications of Gerstewitz nonlinear scalarization function are studied further.[Methods]Using the algebraic interior and the vector closure,some properties of Gerstewitz nonlinear scalarization function are studied.[Findings]Some properties are given for the Gerstewitz nonlinear scalarization function and some nonlinear scalarization results of(weakly)efficient points are established by making use of these properties for a class of vector optimization problems with set-valued maps.[Conclusion]Some results in the sense of topological interior are generalized to the case of algebraic interior,and some properties and applications of Gerstewitz nonlinear scalarization function are generalized.
作者 李伟佳 朱巧 赵克全 LI Weijia ZHU Qiao ZHAO Kequan(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期1-5,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11431004 No.11671062 No.11271391) 重庆市基础与前沿研究计划项目(No.cstc2015jcyjA00027) 重庆市教委科学技术研究项目(No.KJ1500303) 重庆市研究生科研创新项目(No.CYS17174)
关键词 向量优化 Gerstewitz非线性标量化函数 代数内部 非线性标量化 有效点 弱有效点 vector optimization gerstewitz nonlinear scalarization function algebraic interior nonlinear scalarization efficient point weakly efficient point
  • 相关文献

参考文献3

二级参考文献39

  • 1ZHENG XiYin,YANG XiaoQi.The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces[J].Science China Mathematics,2008,51(7):1243-1256. 被引量:6
  • 2傅万涛.集值映射多目标规划问题的解集的连通性[J].高校应用数学学报(A辑),1994,9(3):321-328. 被引量:6
  • 3陈光亚.向量优化问题某些基础理论及其发展[J].重庆师范大学学报(自然科学版),2005,22(3):6-9. 被引量:7
  • 4Kutateladze S S.Convex ε-programming[J].Soviet Mathematics Doklady,1979,20(2):391-393.
  • 5Loridan P.ε-solutions in vector minimization problems[J].Journal of Optimization Theory and Applications,1984,43(2):265-276.
  • 6Rong W D,Wu Y N.ε-weak minimal solutions of vector optimization problems with set-valued maps[J].Journal of Optimization Theory and Applications,2000,106(3):569-579.
  • 7Gutiérrez C,Jiménez B,Novo V.A unified approach and optimality conditions for approximate solutions of vector optimization problems[J].SIAM Journal on Optimization,2006,17(3):688-710.
  • 8Gutiérrez C,Jiménez B,Novo V.On approximate efficiency in multiobjective programming[J].Mathematical Methods of Operations Research,2006,64(1):165-185.
  • 9Chicoo M,Mignanego F,Pusillo L,et al.Vector optimization problem via improvement sets[J].Journal of Optimization Theory and Applications,2011,150(3):516-529.
  • 10Gutiérrez C,Jiménez B,Novo V.Improvement sets and vector optimization[J].European Journal of Operational Research,2012,223(2):304-311.

共引文献15

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部