期刊文献+

结合自动编码器的高光谱影像极限学习机分类

Classification of Hyperspectral Image ELM Combined with Autoencoder
下载PDF
导出
摘要 极限学习机(ELM)分类作为新型神经网络算法可以实现高光谱影像的快速分类,但ELM浅层网络结构不能充分利用高光谱影像所蕴含的丰富的光谱特征。针对该问题,本文结合深度神经网络可以学习光谱深层隐含特征的优势,提出基于降噪自动编码器(DAE)的高光谱影像ELM分类方法。首先,采用DAE构造深层网络模型,利用加噪的样本数据训练网络模型,学习影像光谱的深层隐含特征;然后,用学习到的特征作为极限学习机中隐含层的输出,取代原始ELM分类中利用随机输入权值学习的浅层特征;最后,进而实现高光谱影像的分类。本文分别利用ROSIS和OMIS的高光谱影像进行分类对比实验,结果验证了该方法相对于ELM算法的分类优越性,其充分利用高光谱影像的深层光谱特征,有效提高了分类精度。 As a novel neural network algorithm, extreme learning machine (ELM) can realize rapid classification of hyper- spectral image, but the shallow network structure of ELM fails to make full use of the spectral characteristics contained in hyper- spectral image. To solve this problem, the advantage that deep neural network can learn the implicit spectral characteristics is considered, and a new ELM algorithm based on denoising autoencoders (DAE) is proposed for hyperspectral image classification. Firstly, a deep network model is constructed by DAE and trained by adding noise to sample data, and the deely implied charac- teristics of image are learned. Secondly, the learned characteristics are taken as the output of implied layer in ELM and used to replace the shallow-layer characteristics learned with random input weight in original ELM classification. Finally, the classifica- tion of hyperspectral image is realized. ROSIS and OMIS hyperspectral images are used respectively to conduct comparative exper- iment, and the result shows that the algorithm proposed in this paper is superior to ELM in classification because it can make full use of the deep spectral characteristics of hyperspectral image and effectively improve the classification accuracy.
作者 付琼莹 余旭初 秦进春 吴万全 Fu Qiongying Yu Xuchu Qin Jinchun Wu Wanquan(Information Engineering University, Zhengzhou 450052, China Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China Unit 61243, Urumqi 830002, China)
出处 《测绘科学与工程》 2017年第4期17-23,共7页 Geomatics Science and Engineering
基金 地理信息工程国家重点实验室开放基金资助项目(SKLGIE2015-M-3-1,SKLGIE2015-M-3-2) 卫星测绘技术及应用国家测绘地理信息局重点实验室开放基金资助项目(KLSMTA-201603).
关键词 高光谱影像 深度学习 降噪自动编码器 极限学习机 影像分类 hyperspectral image deep learning denoising autoencoder extreme learning machine image classification
  • 相关文献

参考文献1

二级参考文献16

  • 1唐宏,杜培军,方涛,施鹏飞.光谱角制图模型的误差源分析与改进算法[J].光谱学与光谱分析,2005,25(8):1180-1183. 被引量:16
  • 2汤胜清,程小华.一种基于多层前向神经网络的谐波检测方法[J].中国电机工程学报,2006,26(18):90-94. 被引量:58
  • 3陈亮,刘希,张元.结合光谱角的最大似然法遥感影像分类[J].测绘工程,2007,16(3):40-42. 被引量:23
  • 4孙家俩.遥感原理及应用[M].2版.武汉:武汉大学出版社,2003:1-25.
  • 5浦瑞良,宫鹏.高光谱遥感与应用[M].北京:高等教育出版社,2001:50-200.
  • 6Hughes G F. On lhe mean accuracy of statistical pattern recogniz- ers [ J ]. IEEE Transactions on Information Theory, 1968, 14( 1 ) :55-63. [ DOI:IO. 1109/T1T. 1968. 1054102].
  • 7Jakubauskas M E, legates D R, Kastens J H. Harmonic analysis of time-series AVHRR NDVI data [ J ]. Phomgrammetric Engi- neering and Remote Sensing, 2001, 4: 461470. [ DOI: 10. 1016/S0168-1699(02)00| 16-3].
  • 8Davis J C. Statistics and Data Analysis in Geology[ M]. 2nd ed Hoboken: John Wiley & Sons, 1986, 151-200.
  • 9Rayner J N. An Introduction to Spectral Analysis[ M]. LondonPion L td, 1971 : 121-172.
  • 10Wakilleh G J. Power Systems Harmonics : Fundamentals, Analy- sis and Filter Design[ MI. Berlin: Springer, 2001 : 23-72.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部