期刊文献+

利用M-H算法求解Logistic回归模型参数的贝叶斯估计 被引量:4

Bayesian Estimation of Using M-H Algorithm to Solve Logistic Regression Model Parameters
下载PDF
导出
摘要 文章以航天飞机在不同温度下发射密封圈的失效数据为例,采用随机游动与变量变换M-H算法获得Logistic回归模型参数的后验分布样本并进行贝叶斯分析。同时,进行蒙特卡洛模拟,通过样本轨迹图、直方图、自相关系数图等考查M-H算法的抽样表现,并讨论每种抽样方法的优缺点与提高措施。结果表明:先验分布的选取直接影响贝叶斯估计效果,有先验信息的M-H算法估计的标准差比无先验信息的M-H算法要精确,但随着样本容量增大,趋势在减少,适当的建议分布与变量变换可大大提高M-H算法的抽样效率。 This paper takes the failure data of space shuttle launching sealing rings at different temperatures for example, and conducts Bayesian analysis by adopting random walk and variable transformation M-H algorithm to obtain the posterior distri- bution samples of logistic regression model parameters. Meanwhile, the paper makes a Monte-Carlo simulation, and investigates the sampling performance of M-H algorithm by use of sample trajectory diagram, histogram and autocorrelation coefficient graph and so forth. Finally the paper also discusses the advantages and disadvantages of each sampling method. The analysis result is shown as follows: the selection of the priori distribution directly affects the Bayesian estimation effect; the standard deviation of the M-H algorithm with a priori information is better than the M-H algorithm without prior information, but with the increase of the sample capacity, the trend is decreasing. Appropriate proposed distribution and variable transformation can greatly improve sampiing efficiency of M-H algorithm
作者 王丙参 魏艳华 Wang Bingcan Wei Yanhua(School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, China)
出处 《统计与决策》 CSSCI 北大核心 2017年第18期19-23,共5页 Statistics & Decision
基金 国家自然科学基金资助项目(61104045) 天水师范学院中青年教师科研资助项目(TSA1506)
关键词 M-H算法 混合性 收敛性 随机游动抽样 变量变换法 M-H algorithm miscibility convergence random-walk sampling variable transformation method
  • 相关文献

参考文献2

二级参考文献22

  • 1陈平.ESTIMATORS AND SOME BEHAVIORS FORA PARTIALLY LINEAR MODEL WITH CENSORED DATA[J].Acta Mathematica Scientia,1999,19(3):321-331. 被引量:2
  • 2孟庆芳,张强,牟文英.混沌序列自适应多步预测及在股票中的应用[J].系统工程理论与实践,2005,25(12):62-68. 被引量:8
  • 3刘飞,王祖尧,窦毅芳,张为华.基于Gibbs抽样算法的三参数威布尔分布Bayes估计[J].机械强度,2007,29(3):429-432. 被引量:15
  • 4Givens G H,Hoeting J A.计算统计[M].王兆军,等译.北京:人民邮电出版社,2009.
  • 5Altaleb A, Chauveau D. Bayesian analysis of the Logit model and comparison of two Metropolis-Hastings strategies [J]. Computational Statistics & Data Analysis, 2002,39(1) : 137 - 152.
  • 6Roberts G O,Rosenthal J S. Optimal scaling for various Metropolis-Hastings algorlthms[J]. Statistical Science, 2001, 6(4):351 - 367.
  • 7Geweke J, Tanizaki H. Note on the sampling distribution for the Metropolis-Hastings algorithm[J]. Communication in Statistics-Theory and Methods, 2003, 32(4) : 775 - 789.
  • 8Sawyer S. The Metropolitan-Hastings algorithm and extensions[ J ]. Washington University, April 17, 2004.
  • 9Chen P. Some nonparametric estimators and their properties under the competing risks case[J]. Sankhya: Indian J Statist Series A, 1998, 60(2) : 293 - 304.
  • 10Chen P, Yan F R, Wu Y Y, et al. Detection of oufliers in ARMAX time series models [ J ]. The 5th IIGSS Workshop, Wuhan. June, 2007, to appear.

共引文献34

同被引文献20

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部