期刊文献+

一种基于Voronoi图的航路规划方法 被引量:4

A Path Planning Method Based on Voronoi Diagram
下载PDF
导出
摘要 Voronoi图是一种根据战场多威胁源分布情况获取可行航路点的图形算法,而蚁群算法是一种新型的模拟进化启发式算法。提出一种基于Voronoi图算法的无人机航路规划解决方法,提升了在多威胁源分布的情况下的无人机航路规划效率。首先,根据已知威胁源的数据信息生成加权Voronoi图,并定义每条Voronoi边的代价为组成Voronoi边的2个端点的直线距离;然后利用蚁群算法结合可飞行航迹点集合对无人机在多威胁源分布的飞行环境下进行航路规划。仿真结果验证了所提方法在不同战场环境下解决无人机航路规划问题上的可行性和有效性。 Voronoi diagram is a diagram algorithm fetching optimal path points according to the dis- tribution status of multiple threat sources in battlefield. Ant colony algorithm is a new type of en- lightened algorithm simulating evolution. This paper puts forward a path planning solution method based on Voronoi diagram algorithm, which enhances the efficiency of unmanned aerial vehicle (UAV) path planning in the case of multiple threat sources distribution. Firstly,this paper gener- ates the weighted Voronoi diagram according to the data information of known threat sources,and defines that the total cost of each edge could be calculated according to the distance between the two points of the edge, then uses the ant colony algorithm combining with the flightable flight point set to carry out the path planning for the UAV in the multiple threat source distribution flight environment. The simulation results verify the feasibility and effectiveness of the proposed method in solving the UAV path planning problem under various combat field environments.
作者 王壮 刘聪锋 蔡啸 WANG Zhuang LIU Cong-feng CAI Xiao(Xidian University,Xi'an 710071 ,China Unit 63893 of PLA,Luoyang 471003,China)
出处 《舰船电子对抗》 2017年第4期76-80,共5页 Shipboard Electronic Countermeasure
关键词 无人机航路规划 VORONOI图 蚁群算法 unmanned aerial vehicle path planning Voronoi diagram ant colony algorithm
  • 相关文献

参考文献1

二级参考文献20

  • 1Logan M J, Chu J, Motter M A. Small UAV research and evolution in long endurane electric powered vehicle[C]//Proc, of the AIAA lnfo- tech Aerospace Conference and Exhibit, 2007:1--7.
  • 2Cao H Y, Cao Y C, Chen Y Q. Autopilots for small unmanned aerial vehicles: a survey[J]. International Journal of Control Automation and Systems, 2010, 8(1) : 36 - 44.
  • 3Szczerba R J, Galkowski P, Glicktein I S, et al. Robust algo rithm for real-time route planning[J]. IEEE Trans. on Aero- space and Electronic Systems, 2000, 36(3) : 869 - 878.
  • 4Barton J D. Fundamentals of small unmanned aircraft flight[J]. Johns Hopkins Applied Physics Laboratory Technical Digest, 2012, 31(2):132-149.
  • 5Nikolos I K, Valavanis K P, Tsourveloudis N C. Evolutionary algo- rithm based offline/online path planner for UAV navigation[J]. IEEE Trans. on Systems, Man and Cybernetics, Part B ; Cybernet ics, 2003, 33(6): 898-912.
  • 6Larson R A, Pachter M, Mears M J. Path planning by unmanned air vehicles for engaging an intergrated radar network[C]//Proc. of the AIAA Guidance, Navigation, and Control Com ference and Exhibit, 2005:1 -16.
  • 7Poli R. Analysis of the publications on the applications of parti- cle swarm optimisation[J]. Journal of Artificial Evolution and Applications, 2008,2008(1) : 1 - 10.
  • 8Bergh V D. An analysis of particle swarm optimizers[D]. Pre- toria: University of Pretoria, 2001.
  • 9Moghaddam B F, Ruiz R, Sadjadi S J. Vehicle routing problem with uncertain demands: an advanced particle swarm algorithm[J]. Computers & Industrial Engineering, 2012, 62(1): 306-317.
  • 10Mulpuru S K, Kollu K C. Intelligent route planning for multi- ple robots using particle swarm optimization[C]//Proc, of the International Conference on Computer Technology and Devel- opment, 2009 : 15 - 18.

共引文献27

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部