期刊文献+

基于FCN的TFT-LCD表面缺陷快速检测算法 被引量:5

Fast Detection Algorithm for TFT-LCD Surface Defects based on the Full Convolution Neural Networks
下载PDF
导出
摘要 为克服TFT-LCD表面缺陷检测中边缘模糊、对比度低、图像中存在重复纹理背景等噪声的干扰,提出了种基于全卷积神经网络的端到端的快速检测算法。该算法能够通过感受域获取原图信息,并生成低对比度特征图,然后将低对比度特征图映射到高对比度特征图上,最后通过高对比度特征图上的感受域重构出高对比度缺陷图像,并将缺陷筛选出来。 In order to overcome the interference of edge blur, low contrast, and repeat texture background in TFT-LCD surface defect detection, an end-to-end fast detection algorithm based on full convolution neural network was proposed. The algorithm can obtain the original image information through the sensing domain and generate the low contrast feature maps, and then map the low contrast feature maps to the high contrast feature maps. Finally, the high contrast defect images reconstructed based on the receptive field of the high contrast feature maps. then the defects were screened out. Compared with the current commonly used algorithms, this proposed method is the most prominent in the accuracy and speed of defect detection.
作者 欧先锋 晏鹏程 向灿群 张国云 吴健辉 涂兵 郭龙源 OU Xianfeng YAN Pengcheng XIANG Canqun ZHANG Guoyun WU Jianhui TU Bing GUO Longyuan(College of Information & Communication Engineering Key Laboratory of Optimization & Control for Complex Systems, Hunan Institute of Science and Technology, Yueyang 414006, China)
出处 《成都工业学院学报》 2017年第3期6-10,共5页 Journal of Chengdu Technological University
基金 国家自然科学基金项目(51704115) 湖南省自然科学基金项目(2017JJ3099 2016JJ2064) 湖南省科技计划项目(2016TP1021) 湖南省研究生创新项目(CX2016B670) 湖南省教育厅科学研究项目(16C0723)
关键词 表面缺陷检测 全卷积神经网络 深度学习 端到端 感受域 surface defect detection Full Convolution Neural Networks deep learning end-to-end receptive field
  • 相关文献

参考文献3

二级参考文献29

  • 1吴家伟,严京旗,方志宏,夏勇.基于Adaboost改进算法的铸坯表面缺陷检测方法[J].钢铁研究学报,2012,24(9):59-62. 被引量:10
  • 2赵娟,彭彦昆,Sagar Dhakal,张雷蕾.基于机器视觉的苹果外观缺陷在线检测[J].农业机械学报,2013,44(S1):260-263. 被引量:43
  • 3张昱,张健.基于多项式曲面拟合的TFT-LCD斑痕缺陷自动检测技术[J].光电工程,2006,33(10):108-114. 被引量:19
  • 4LU Rongsheng, SHI Yanqiong, LI Qi, et al. AOI Techniques for Surface Defect Inspection [J]. Applied Mechanics and Materials(S1660-9336), 2010, 36: 297-302.
  • 5Nakashima K. Hybrid inspection system for LCD color filter panels [C]// Proceedings of the 10th International Conference on lnstrumentationandMeasurementTechnology, Hamamatsu, Japan, May 10-12, 1994, 2: 689-692.
  • 6Sokolov S M, Treskunov A S. Automatic vision system for final test of liquid crystal displays [C]// Proceedings of the IEEE InternationalConference on Robotics andAntomation, Nice, France, May 12-14, 1992: 1578-1582.
  • 7OH J H, KWAK D M, LEE K B, et al. Line Defect Detection in TFT-LCD Using Directional Filter Bank and Adaptive Multilevel Threshohding [J]. Key Engineering Materials(S1662-9795), 2004, 270/273: 233-238.
  • 8RYU J S, JONG-HWAN, KIM J G, et al. TFT-LCD panel blob-mura inspection using the correlation of wavelet coefficients [C]// IEEE Region 10Conference, ChiangMai, Thailand, Nov21-24, 2004: 219-222.
  • 9LEE J, YOO S. Automatic Detection of Region-Mura Defect in TFT-LCD [J]. IEICE Transactions on Information and Systems(S0916-8532), 2004, 87(10): 2371-2378.
  • 10LU Chijie, TSAI Duming. Automatic Defect Inspection for LCDs Using Singular Value Decomposition [J]. International JournalofAdvanced Manufacturing Technology(S0268-3768), 2005, 25(1/2): 53-61.

共引文献67

同被引文献34

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部