期刊文献+

Hilbert空间中严格拟伪压缩映像族的具误差的复合迭代算法

Composite Iteration Methods with Errors for Strict Quasi-Pseudo-Contractions in Hilbert
下载PDF
导出
摘要 在Hilbert空间中,设计了一种关于κn-严格拟伪压缩映像族的具误差的复合迭代算法,并且利用度量投影的方法证明了严格拟伪压缩映像族的具误差的公共不动点的强收敛定理,所得结果进一步改进和推广了一些最新文献的相关结果. The composite iteration methods with errors forκn-strict quasi-pseudo-contractions mappings is studied.By using metric projection methods,a strong convergence theorem for common fixed points of a family of strict quasi-pseudo-contractions mappings with errors is proved in the setting of Hilbert spaces.The results further improve and generalize some relevant results of the latest literature.
作者 何春丽 高兴慧 He Chunli Gao Xinghui(College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China)
出处 《宁夏大学学报(自然科学版)》 CAS 2017年第3期238-241,共4页 Journal of Ningxia University(Natural Science Edition)
基金 陕西省自然科学基础研究计划资助项目(2014JM2-1003) 陕西省高水平大学建设专项资金资助项目(数学学科 2012SXTS07)
关键词 具误差的复合迭代算法 严格拟伪压缩映像族 强收敛定理 不动点 composite iteration methods with errors strict quasi-pseudo-contraction mappings strong convergence theorem fixed point
  • 相关文献

参考文献4

二级参考文献25

  • 1Haugazeau Y. Sur les Inequations Variationnelles et la Minimisation de Fonctionnelles Convexes. Paris: Universite de Paris, 1968.
  • 2Qin X L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal., 2007, 67(6): 1958-1965.
  • 3Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 2005, 134: 257-266.
  • 4Zhou H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 2008, 343: 546-556.
  • 5Takahashi W. Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000.
  • 6LI Wei, CHO Y J. Iterative Schemes for Zero Points of Maximal Monotone Operators and Fixed Points of NonexpansiveMappings and Their Applications [J]. Fixed Point Theory Appl, 2008,2008 : 1 — 8.
  • 7TAKAHASHI W. Nonlinear Functional Analysis [M], Yokohama: Yokohama Publishers, 2000.
  • 8Zhou Haiyun. Strong convergence theorems for a family of Lipschitz quasi-pseudo-contractions in Hilbert spaces[J]. Nonlinear Anal, 2009, 71: 120-125.
  • 9Zhou Haiyun. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces[J]. J Math Anal Appl, 2008, 343: 546-556.
  • 10Aoyama K, Kohsaka F, Takahashi W. Shrinking projection methods for firmly nonexpansive map- pings[J]. Nonlinear Anal, 2009, 71: 1626-1632.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部