期刊文献+

基于虚拟机放置的数据传输时间最小化方法

Data Transfer Time Minimization Method Based on Virtual Machine Placement
下载PDF
导出
摘要 在数据密集型结构的数据中心平台中,数据的传输时间是影响整体任务完成时间的重要因素。优秀的虚拟机放置优化方法所需数据传输时间较少,可缩短整体任务完成时间。为此,构建虚拟机放置的优化模型,实现数据传输时间的最小化。证明该模型是一个NP-Complete问题,并设计启发式算法对其进行求解。实验结果表明,该方法能合理优化虚拟机放置位置,有效减少数据传输时间。 The Data Transfer Time (DTT) is one of the dominating factors of task completion time in the data-intensive architecture of datacenter.A reasonable Virtual Machine (VM) placement method can effectively resolve the above problem.A good optimal VM placement result can obtain short DTT in the data-intensive datacenter and get the optimal task completion time in the datacenter.Aiming at this characteristic,this paper presents an optimized VM placement model so as to minimize the DTT.From the view of model analysis,the proposed model is a NP-complete problem.A corresponding proof is given in this paper.Simultaneously,a heuristic algorithm is given to solve the proposed model.Experimental results show that the proposed method can reasonably optimize VM placement and effectively decrease DTT in the data-intensive datacenter.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第1期27-31,共5页 Computer Engineering
基金 国家自然科学基金(61373127)
关键词 虚拟机放置 数据中心 数据密集型结构 数据传输时间 数据节点 虚拟机 Virtual Machine (VM) placement datacenter data-intensive architecture data node
  • 相关文献

参考文献2

二级参考文献29

  • 1ISLAM S, KEUNG J, LEE K, et al. Empirical pre- diction models for adaptive resource provisioning in the cloud [ J ]. Future Generation Computer Systems, 2012,28( 1 ) : 155 - 162.
  • 2MAURER M, EMEAKAROHA V C, BRANDIC l, et al. Cost - benefit analysis of an SLA mapping ap- proach for defining standardized cloud computing goods [ J]. Future Generation Computer Systems, 2012,28 (1) :39 -47.
  • 3DASTJERDI A V, TABATABAEI S G H, BUYYA R. A dependency - aware ontology - based approach for deploying service level agreement monitoring services in cloud [ J ]. Software: Practice and Experience, 2012,42(4) :501 - 518.
  • 4EMEAKAROHA V C, NETTO M A S, CALHEIROS R N, et al. Towards autonomic detection of sla viola- tions in cloud infrastructures [ J ]. Future Generation Computer Systems, 2012,28 (7) : 1017 - 1029.
  • 5GANDHI A, CHEN Y, GMACH D, et al. Hybrid re- source provisioning for minimizing data center SLA vio- lations and power consumption[ J]. Sustainable Compu- ting: Informatics and Systems, 2012,2(2):91 -104.
  • 6WU L, KUMAR GARG S, BUYYA R. SLA -based admission control for a software - as - a - service pro- vider in cloud computing environments [ J ]. Journal of Computer and System Sciences, 2012, 78 (5) : 1280 - 1299.
  • 7ARDAGNA D, TRYBIAN M, ZHANG L. SLA based resource allocation policies in autonomic environments [ J ]. Journal of Parallel and Distributed Computing, 2007,67 ( 3 ) :259 - 270.
  • 8WALKER E. Benchmarking Amazon EC2 for high - performance scientific computing [ J ]. Usenix Login, 2008,33 ( 5 ) : 18 - 23.
  • 9HILLEY D. Cloud computing : a taxonomy of platform and infrastructure- level offerings[J]. Georgia Insti- tute of Technology,2009 ( 1 ) :1 - 37.
  • 10CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim: a toolkit for modeling and simula- tion of cloud computing environments and evaluation of resource provisioning algorithms [ J ]. Software : Practice and Experience, 2011,41 ( 1 ) :23 -50.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部