期刊文献+

基于StOMP算法的WSN压缩感知数据重构 被引量:5

WSN Compressed Sensing Data Reconstruction Based on StOMP Algorithm
下载PDF
导出
摘要 分段正交匹配追踪算法(StOMP)运算速度快、计算量小,适用于无线传感器网络(WSN)压缩感知数据重构。为此,分析并研究StOMP算法的门限阈值选取对WSN压缩感知数据重构精度的影响,提出一种StOMP算法门限阈值的自适应调整方法。基于比例-积分-微分方法的思想,根据StOMP算法的当次重构误差计算门限阈值的调整值,并使用调整后的门限阈值重新进行数据重构,重复该过程以提高重构精度。实验结果表明,该方法能快速找到满足误差要求的门限阈值,与采用固定门限阈值的调整方法相比,重构精度更高。 Stagewise Orthogonal Matching Pursuit( StOMP) algorithm has rapid computing speed and small amount of calculation quantity, and is thus highly suited to the reconstruction of Wireless Sensor Network( WSN) Compressed Sensing( CS) data. The influence of threshold selection of StOMP algorithm on the reconstruction accuracy of CS data in WSN is analyzed and studied. And this paper proposes an adaptive adjustment method of threshold value in the StOMP algorithm. Based on the idea of Proportional-Integral-Derivative( PID) method,the adjustment value of the threshold is calculated according to the reconstruction error. Reconstruct the data with the new threshold, and this process is repeated to improve the accuracy of reconstruction. Experimental result shows that this method can quickly find the threshold value which meets the error requirement and has distinctly improved reconstruction precision compared with the adjustment method of fixed threshold value.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第9期149-155,共7页 Computer Engineering
基金 国家发改委项目(Q5025001201502) 中央高校基本科研业务费专项资金(W16JB00340)
关键词 无线传感器网络 压缩感知 数据重构 分段正交匹配追踪算法 比例-积分-微分方法 Wireless Sensor Network(WSN) Compressed Sensing(CS) data reconstruction Stagewise Orthogonal Matching Pursuit(StOMP) algorithm Proportional-Integral-Derivative(PID) method
  • 相关文献

参考文献3

二级参考文献54

  • 1浦一芬.印度洋二维碳循环模式中表层CO_2分压分布对物理和生化过程的敏感性试验[J].气候与环境研究,2009,14(3):301-308. 被引量:3
  • 2曹建华,宋林华,姜光辉,谢运球,游省易.路南石林地区土壤呼吸及碳稳定同位素日动态特征[J].中国岩溶,2005,24(1):23-27. 被引量:16
  • 3Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 4Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 5Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 6Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 7Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 8Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 9Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 10Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.

共引文献223

同被引文献45

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部