期刊文献+

红斑鳞状皮肤病的聚类分析 被引量:4

Clustering Analysis for Erythemato-Squamous Diseases
下载PDF
导出
摘要 针对红斑鳞状皮肤病鉴别诊断难题,提出利用聚类分析进行诊断;采用3种k-均值、2种k-中心点、最小生成树以及密度峰值点快速搜索聚类算法对该疾病数据进行分析,比较各算法对该疾病的聚类误差平方和、聚类结果 Rand指数、Jaccard系数、调整Rand指数以及聚类准确率;比较各算法对预处理的数据子集的聚类结果与文献中采用k-均值算法对未预处理的该数据子集的聚类结果。结果表明:邻域k-中心点算法对红斑鳞状皮肤病有很好的聚类效果,聚类准确率、聚类结果 Rand指数、Jaccard系数、调整Rand指数均优于对比算法,密度全局k-均值算法的聚类效果次之,全局k-均值算法取得最佳聚类误差平方和;k-均值算法对预处理数据子集的聚类准确率最高,邻域k-中心点与密度全局k-均值算法的聚类准确率相等;数据预处理可提高k-均值算法对该疾病的诊断准确率。 To solve the diagnosis problem of erythemato-squamous diseases, the clustering analysis method was suggested to diagnose. Three k-means algorithms, two k-medoids algorithms, minimum spanning tree and the clustering by fast search and find of density peaks algorithms were applied to analyze the diseases data. The clustering results of these algorithms were compared in terms of the clustering error, Rand index, Jaccard coefficient, adjusted Rand index, and clustering accuracy. The clustering results of these algorithms on the pre-processed subset of the diseases dataset were compared with those of k-means algorithms on the original subset. The results show that the neighborhood based k-medoids algorithm gets the best clustering results in terms of the clustering accuracy, Rand index, Jaccard coefficient and adjusted Rand index. The density based global k-means algorithm follows. The global k-means algorithm gets the optimal clustering error. The clustering accuracy of k-means algorithms on the pre-processed subset is superior to others. The neighbor- hood based k-medoids and density global k-means algorithm get the same clustering accuracy, which is inferior to that in the literature. The preprocess of the dataset can improve the diagnosis accuracy of k-means algorithms to the diseases.
作者 张宜 谢娟英 李静 陈媛媛 贺瑞瑞 李燕 ZHANG Yi XIE Juanying LI Jing CHEN Yuanyuan HE Ruirui LI Yan(School of Computer Science, Shaanxi Normal University, Xi'an 710062, China)
出处 《济南大学学报(自然科学版)》 北大核心 2017年第3期181-187,共7页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金项目(61673251) 陕西省科技攻关项目(2013K12-03-24) 中央高校基本科研业务费专项资金项目(GK201503067)
关键词 红斑鳞状皮肤病 K-均值算法 k-中心点算法 最小生成树 密度峰值点 聚类分析 erythemato-squamous disease k-means algorithm k-medoids algorithm minimum spanning tree densitypeak clustering analysis
  • 相关文献

参考文献8

二级参考文献131

共引文献245

同被引文献35

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部