期刊文献+

基于LCSCA特征与协同表示的轨迹分析算法

Trajectory Analysis Algorithm Based on Least-squares Cubic Spline Curves Approximation Feature and Collaborative Representation
下载PDF
导出
摘要 为了充分利用最小二乘三次样条近似(LCSCA)特征进行人体行为识别,提出一种基于协同表示分类(CRC)的轨迹分析算法;该算法将传统稀疏表示的分类识别算法中基于l_1范数的稀疏求解,改为基于l_2范数的协同表示求解,大幅降低了分类算法的复杂度;该方法将LCSCA轨迹特征与CRC分类器紧密结合,采用距离加权的Tikhonov矩阵增强分类效果。结果表明,该方法对于轨迹的等变化具备较强鲁棒性,算法运行速度较快。 Concerning the full use of least-squares cubic spline curves approximation (LCSCA) feature for human behavior recognition, the trajectory analysis algorithm based on collaborative representation classification (CRC) was proposed. This algorithm reduced the complexity of the classification algorithm by replacing the sparse representation classification based on 11 -norm with the collaborative representation classification based on l2-norm. LCSCA was combined with the CRC classifier to enhance the classification effect by using the distance weighted Tikhonov matrix. The results indicate that this method is robust to the change of trajectory and the operating velocity of this algorithm is faster.
作者 王丽珍 胡天睿 李策 WANG Lizhen HU Tianrui LI Cei(College of Mechanical Electronic and Information Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)
出处 《济南大学学报(自然科学版)》 北大核心 2017年第3期202-207,共6页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金青年科学基金项目(61601466) 中央高校基本科研业务费专项资金项目(2016QJ04)
关键词 轨迹分析 最小二乘三次样条近似特征 协同表示 分类算法 trajectory analysis least-squares cubic spline curves approximation feature collaborative representation classification
  • 相关文献

参考文献1

二级参考文献27

  • 1Lou J,Liu Q,Tan T,et al. Semantic interpretation of object ac- tivities in a surveillance system [ A ]. The 16th International Conference on Pattern Recognition [ C ]. USA: IEEE, 2002,3. 777 - 780.
  • 2Buzan D,et al. Extraction and clustering of motion trajectories in video [ A] . Ttte 17th International Conference on Pattern Recognition [ C ]. USA: IEEE,2004,2. 521-524.
  • 3Hu W,Li X, Tian G,et al. An incremental DPMM-based meth- od for trajectory clustering, modeling, and retrieval [ J ]. IFEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(5 ) :1051 - 1065.
  • 4Restrepo J C, et al. Trajectory generation for a robotic in a robocup test scenery using Kalman filter and B-spline curves [ A ]. XVII Symposium of Image, Signal Process- ing, and Artificial Vision (STSIVA) [ C ]. USA: IEEE, 2012. 110 - 115.
  • 5Dyana A, et al. Combining features for shape and motion trajectory of video objects for efficient content based video retrieval [ A]. International Conference on Advances in Pat- tern Recognition [ C ]. USA: IEEE, 2009.1 l 3 - 116.
  • 6Kolesnikov A. Efficientonline algorithms for the polygonal approximation of trajectory data[ A]. The 2th IEEE Inter- national Conference on Mobile Data Management (MDM) [ C]. USA :IEEE,2011,1. 49 -57.
  • 7Naftel A,Khalid S. Motion trajectory learning in the DPT-co- efficient feature space[ A ]. IEEE International Conference on Computer Vision Systems[ C ]. USA :IEEE,2006.47 -47.
  • 8Morris B T, Trivedi M M. A survey of vision-based trajec- tory learning and analysis for surveillance [ J ]. IEEE Transactions on Circuits and Systems for Video Technolo- gy,2008,18(8) :1114 - 1127.
  • 9Morris B, Trivedi M. Learning trajectory patterns by clustering:Experimental studies and comparative evalu- ation[ A]. IEEE Conference on Computer Vision and Pattern Recognition [ C] . USA: IEEE, 2009. 312 -319.
  • 10Calderara S,Prati A, Cucchiara R. Mixtures of von raises distributions for people trajectory shape analysis [J] IEEE Transactions on Circuits and Systems for Video Technolo- gy,2011,21 (4) :457 -471.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部