期刊文献+

基于K-means聚类算法的住院费用数据挖掘 被引量:1

Data Mining of Hospitalization Expenses Based on K-means Clustering Algorithm
下载PDF
导出
摘要 目前,我国医疗费用快速增长,人均门诊和住院费用的增长幅度远远大于人均收入增长幅度,医疗保险费用支出也大幅度提升。如何实现医疗保险费用控制是我国社会保险行业研究的一大热点问题。运用K-means聚类算法,对医保信息系统中记录的住院病人等信息进行挖掘,研究分析之间存在的内在联系,为合理控制医疗费用的过快增长提供参考。 At present, the hospitalization expenses in China is increasing rapidly, and the increasing range of per capita outpatient and hospitalization expenses is far greater than the increasing range of per capita income, thus medical insurance expenses is increasing significantly as well.How to realize the medical insurance expense control is a hotspot in the research of social insurance industry in our country. Adopts Kmeans clustering algorithm to mine information of hospitalized patients recorded in medical insurance system, so as to study and analyze the inner relations and provide reference for rational control of the excessive rapid growth of hospitalization expenses.
作者 谢筱筱
出处 《现代计算机(中旬刊)》 2017年第9期54-56,共3页 Modern Computer
关键词 数据挖掘 医疗保险 聚类算法 费用控制 Data Mining Medical Insurance Clustering Algorithm Expense Control
  • 相关文献

参考文献3

二级参考文献25

共引文献30

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部