期刊文献+

Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds 被引量:1

Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
原文传递
导出
摘要 Let (M, g) be an n-dimensional Riemannian manifold and T2M be its second- order tangent bundle equipped with a lift metric g. In this paper, first, the authors con- struct some Riemannian almost product structures on (T2M, g) and present some results concerning these structures. Then, they investigate the curvature properties of (T2M, g). Finally, they study the properties of two metric connections with nonvanishing torsion on (T2M, g: The//-lift of the Levi-Civita connection of g to TaM, and the product conjugate connection defined by the Levi-Civita connection of g and an almost product structure.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第4期985-998,共14页 数学年刊(B辑英文版)
关键词 Almost product structure Killing vector field Metric connection Rie-mannian metric Second-order tangent bundle 黎曼流形 二阶 产品结构 几何 线丛 连接 度量 切丛
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部