期刊文献+

Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights 被引量:2

Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights
原文传递
导出
摘要 The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm(PSGA) is employed for the optimizer. A rotorcraft Computational Structural Dynamics(CSD) code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics(CFD) code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches. The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm(PSGA) is employed for the optimizer. A rotorcraft Computational Structural Dynamics(CSD) code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics(CFD) code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1427-1440,共14页 中国航空学报(英文版)
基金 supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (No. 2017R1D1A1A09000590)
关键词 Active twist High-speed flight Hub vibration Non-harmonic Power required Active twist High-speed flight Hub vibration Non-harmonic Power required
  • 相关文献

同被引文献15

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部