期刊文献+

Investigation of high-speed abrasion behavior of an abradable seal rubber in aero-engine fan application 被引量:5

Investigation of high-speed abrasion behavior of an abradable seal rubber in aero-engine fan application
原文传递
导出
摘要 Abradable seal rubber has been widely used in aero-engine fans to improve their efficiency by reducing the clearance between rotating and stationary components. To investigate the high-speed scraping behavior between a vulcanized silicone rubber and a Ti-6Al-4V fan blade and evaluate the abradable performance of seal rubber, abrasion tests were conducted at a blade tip velocity of 50–300 m/s with an incursion rate of 100 lm/s. The influences of the blade tip velocity on the wear mechanism and interaction forces were specially analyzed. It is shown that abrasive wear and pattern wear are the predominant wear mechanisms, and pattern wear can be seen as the emergence and propagation of cracks. With an increase of the blade tip velocity, both of the final incursion depth and wear mass loss of seal rubber exhibit growth trends. The gradual changes of rubbing forces with an increase of rubbing time are the characteristic of abrasive wear, and force curves with unstable mutations are a reflection of pattern wear. At a constant incursion rate of 100 lm/s, the maximum values of interaction forces decrease first and then grow with an increase of the blade tip velocity, and the blade tip velocity of 150 m/s becomes the cut-off point between abrasive wear and pattern wear. Abradable seal rubber has been widely used in aero-engine fans to improve their efficiency by reducing the clearance between rotating and stationary components. To investigate the high-speed scraping behavior between a vulcanized silicone rubber and a Ti-6Al-4V fan blade and evaluate the abradable performance of seal rubber, abrasion tests were conducted at a blade tip velocity of 50–300 m/s with an incursion rate of 100 lm/s. The influences of the blade tip velocity on the wear mechanism and interaction forces were specially analyzed. It is shown that abrasive wear and pattern wear are the predominant wear mechanisms, and pattern wear can be seen as the emergence and propagation of cracks. With an increase of the blade tip velocity, both of the final incursion depth and wear mass loss of seal rubber exhibit growth trends. The gradual changes of rubbing forces with an increase of rubbing time are the characteristic of abrasive wear, and force curves with unstable mutations are a reflection of pattern wear. At a constant incursion rate of 100 lm/s, the maximum values of interaction forces decrease first and then grow with an increase of the blade tip velocity, and the blade tip velocity of 150 m/s becomes the cut-off point between abrasive wear and pattern wear.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1615-1623,共9页 中国航空学报(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities (No. 2013XZZX005)
关键词 Abradability Abrasion test equipment Aero-engine Silicone seal rubber Wear mechanism Abradability Abrasion test equipment Aero-engine Silicone seal rubber Wear mechanism
  • 相关文献

参考文献3

二级参考文献3

共引文献28

同被引文献27

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部