期刊文献+

石墨烯粉末导热性能的研究 被引量:2

Study of thermal conductivity of graphene powder
原文传递
导出
摘要 采用瞬态电热技术测量了5~6层纯石墨烯粉末中石墨烯的热扩散率,其值为1.15×10-5 m2/s,相应的导热系数为18.000 W/(m·K)。借助导热仪研究了不同密度下石墨烯粉末导热系数的变化情况,发现其导热系数与密度成正比。密度由0.02增加到0.22g/cm3时,导热系数总体提升了8.09%。另通过实验得到了含水率对石墨烯粉末导热性能的影响。实验结果显示,石墨烯粉末含水率由0.0%增加到99.8%的过程中,导热系数先是上升随后下降最终直线降至最低点(约为0.765~1.030 W/(m·K))。其中当含水率达到96.7%时,混合物(石墨烯与水)的导热系数提高了62.80%。该研究为石墨烯热应用及热管理提供了理论支撑。 The thermal diffusivity of five-six layers of graphene is measured by the transient electro-thermal technique. The thermal diffusivity of graphene powder is 1.15 ×10^-5 m^2/s, and the corresponding intrinsic thermal conductivity is 18.000 W/(m - K). The thermal conductivity of graphene powder under different density is measured by thermal conductivity instrument. It is found that the thermal conductivity of graphene powder increases with density. When the density of graphene powder increases from 0.02 to 0.22 g/cm3 , the thermal conductivity increases by 8.09 -. The influence of moisture content on the thermal conductivity of graphene powder is also examined with the moisture content in from 0.0% to 99.8%. The results show that the thermal conductivity of graphene powder increase firstly and then declines, eventually falls to the lowest value with moisture content. When the moisture content of graphene powder increases to 96.7%, the thermal conductivity of graphene powder increases by 62.80%. This study provides a theoretical support for the thermal management and thermal applications of graphene.
作者 董华 张文婵 林欢 张敬奎 DONG Hua ZHANG Wen-chan LIN Huan ZHANG Jin-kui(Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266000, Chin)
出处 《热科学与技术》 CAS CSCD 北大核心 2017年第4期259-265,共7页 Journal of Thermal Science and Technology
关键词 石墨烯粉末 石墨烯粉末含水率 密度 热扩散率导热系数瞬态电热技术 graphene powder moisture content of graphene powder density thermal conductivity thermal diffusivity transient electro-thermal technique
  • 相关文献

参考文献1

二级参考文献40

  • 1Crone T. J. , Tolstoy M. , Science, 2010, 330(6004) , 634.
  • 2Ahmad A. J. , Sumathi S. , Harneed B. H. , Chem. Eng. J. , 2005, 108(1/2): 179-185.
  • 3Suni S. , Kosunen A. L. , Hautala M. , Pasila A. , Romantschuk M. , Mar. Pollut. Bull. , 2004, 49(11/12): 916-921.
  • 4Wei Q. F. , Mather R. R. , Fotheringham A. F. , Yang R. D. , Mar. Pollut. Bull. , 2003, 46(6): 780-783.
  • 5Li H. , Liu L. F. , Yang F. L. , Mar. Pollut. Bull. , 21}12, 64(8): 1648-1653.
  • 6Feng Y. , Xiao C. F. , J. Appl. Polym. Sci. , 2006, 101(3): 1248-1251.
  • 7Feng Y. , Xiao C. F. , Int. Polyrn. Proc. , 2004, 19(3) , 262-266.
  • 8Zhao J. , Xiao C. F. , Xu N. K. , Environ. Sci. Pollut. R. , 2013, 20(6): 4137-4145.
  • 9Xiao C. F. , Xu N. K. , An S. L. , Feng Y. , Method of Preparing Oil Absorbing Fibers, US 8110525 B2, 2009-12-10.
  • 10Zhao J. , Xiao C. F. , Feng Y. , Xu N. K. , Polym. Rev. , 2013, 53(4) 527-545.

共引文献18

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部