期刊文献+

基于加权峭度的滚动轴承故障特征提取

Extracting Fault Features of Rolling Bearings Based on Weighted Kurtosis
原文传递
导出
摘要 针对峭度谱(Kurtogram)无法有效区别振动信号中的瞬态故障冲击和脉冲噪声,难以准确提取微弱的滚动轴承故障特征的问题,提出一种基于加权峭度(Weighted Kurtosis,WK)的滚动轴承故障特征提取方法,通过固定设置滤波带宽,利用加权峭度识别共振中心频率,确定带通滤波器的滤波中心频率和带宽,结合包络分析提取滚动轴承故障特征,并通过采集变速箱滚动轴承振动数据对该方法进行了验证。结果表明:该方法能够有效克服峭度谱的缺陷,稳健识别滚动轴承共振中心频率,准确提取滚动轴承故障特征,验证了该方法的有效性。 As the Kurtogram cannot effectively differentiate noise impulse and transient fault shock in the vibration signal, it is difficult to extract weak fault features of rolling bearings, a novel method based on Weighted Kurtosis(WK) is proposed to extract fault features of rolling bearings in this paper. The proposed method utilizes a WK to identify the resonant central frequency and confirm the band-pass filter central frequency by setting triple fault frequency as filtered bandwidth, coupling with envelope analysis. Finally, rolling bearing vibration data sampled from gearbox are ultilized to verify the efficiency of the proposed method. The results show that, the proposed method can effectively overcome the defects of Kurtogram, steadily identify resonant central frequency band, and accurately extract fault features of rolling bearings. The validity of the method is verified.
出处 《装甲兵工程学院学报》 2017年第4期46-51,共6页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 峭度谱 加权峭度(WK) 滚动轴承 特征提取 Kurtogram Weighted Kurtosis (WK) rolling bearing feature extraction
  • 相关文献

参考文献4

二级参考文献53

  • 1梅宏斌,吴雅,杨叔子,崔乐芳,吴克勤.用包络分析法诊断滚动轴承故障[J].轴承,1993(8):38-40. 被引量:11
  • 2胡桥,何正嘉,訾艳阳,张周锁.基于模糊支持矢量数据描述的早期故障智能监测诊断[J].机械工程学报,2005,41(12):145-150. 被引量:13
  • 3张晓冉.峰度统计意义的探讨[J].燕山大学学报,2006,30(1):57-60. 被引量:8
  • 4梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155. 被引量:20
  • 5MCFADDEN P, SMITH D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration, 1984, 98(2): 263-273.
  • 6MCFADDEN P, SMITH J. Vibration monitoring of rolling element bearings by the high-frequency resonance technique--a review[J]. Tribology International, 1984, 17(1): 3-10.
  • 7QIU Hal, LEE J, LIN Jing, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(1): 1066-1090.
  • 8RUBINI R, MENEGHETTI U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings[J]. Mechanical Systems and SignalProcessing, 2001, 15(2): 287-302.
  • 9YIAKOPOULOS C, ANTONIADIS I. Wavelet based demodulation of vibration signals generated by defects in rolling element bearings[J]. Shock and Vibration, 2002, 9(6): 293-306.
  • 10LIN Jing, ZUO Mingjian. Gearbox fault diagnosis using adaptive wavelet filter[J]. Mechanical Systems and Signal Processing, 2003, 20(8): 2022-2045.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部